Abstract:
An RC IGBT includes: an active region with separate IGBT and diode sections; a semiconductor body forming a part of the active region; a first load terminal and control terminal at a first side of the body and a second load terminal at a second side, the control terminal including a control terminal finger that laterally overlaps, in the active region, with the diode section. Control trenches extending into the semiconductor body along a vertical direction have a control trench electrode electrically connected to the control terminal for controlling a load current between the load terminals in the IGBT section. At least one control trench extends into both IGBT and diode sections. The electrical connection between the control trench electrode of that control trench and the control terminal is established at least based on an electrically conductive member arranged, in the diode section, in contact with the control terminal finger.
Abstract:
A power semiconductor switch includes an active cell region with a drift region, an edge termination region, and IGBT cells within the active cell region. Each IGBT cell includes trenches that extend into the drift region and laterally confine mesas. At least one control trench has a control electrode for controlling the load current. At least one dummy trench has a dummy electrode electrically coupled to the control electrode. At least one further trench has a further trench electrode. At least one active mesa is electrically connected to a first load terminal within the active cell region. Each control trench is arranged adjacent to no more than one active mesa. At least one inactive mesa is adjacent to the dummy trench. A cross-trench structure merges each control trench, dummy trench and further trench to each other. The cross-trench structure overlaps at least partially along a vertical direction with the trenches.
Abstract:
A power semiconductor device is disclosed. The device includes a semiconductor body coupled to a first load terminal structure and a second load terminal structure, a first cell and a second cell. A first mesa is included in the first cell, the first mesa including: a first port region and a first channel region. A second mesa included in the second cell, the second mesa including a second port region. A third cell is electrically connected to the second load terminal structure and electrically connected to a drift region. The third cell includes a third mesa comprising: a third port region, a third channel region, and a third control electrode.
Abstract:
A semiconductor device comprising a source region being electrically connected to a first load terminal (E) of the semiconductor device and a drift region comprising a first semiconductor material (M1) having a first band gap, the drift region having dopants of a first conductivity type and being configured to carry at least a part of a load current between the first load terminal (E) and a second load terminal (C) of the semiconductor device, is presented. The semiconductor device further comprises a semiconductor body region having dopants of a second conductivity type complementary to the first conductivity type and being electrically connected to the first load terminal (E), a transition between the semiconductor body region and the drift region forming a pn-junction, wherein the pn-junction is configured to block a voltage applied between the first load terminal (E) and the second load terminal (C). The semiconductor body region isolates the source region from the drift region and includes a reduced band gap zone comprising a second semiconductor material (M2) having a second band gap that is smaller than the first band gap, wherein the reduced band gap zone is arranged in the semiconductor body region such that the reduced band gap zone and the source region exhibit, in a cross-section along a vertical direction (Z), at least one of a common lateral extension range (LR) along a first lateral direction (X) and a common vertical extension range (VR) along the vertical direction (Z).
Abstract:
A semiconductor body of an IGBT includes: a first base region of a second conductivity type; a source region of a first conductivity type different from the second conductivity type and forming a first pn-junction with the first base region; a drift region of the first conductivity type and forming a second pn-junction with the first base region; a collector region of the second conductivity type; at least one trench filled with a gate electrode and having a first trench portion of a first width and a second trench portion of a second width, the second width being different from the first width; and a field stop region having the first conductivity type and located between the drift region and the collector region. The field stop region includes a plurality of buried regions having the second conductivity type.
Abstract:
A semiconductor device includes semiconductor body region and a surface region, the semiconductor body region including a first conductivity type first semiconductor region type and a second conductivity type second semiconductor region. The semiconductor device further includes: a first load contact structure included in the surface region and arranged for feeding a load current into the semiconductor body region; a first trench extending into the semiconductor body region and having a sensor electrode and a first dielectric, the first dielectric electrically insulating the sensor electrode from the second semiconductor region; an electrically conductive path electrically connecting the sensor electrode to the first semiconductor region; a first semiconductor path, wherein the first semiconductor region is electrically coupled to the first load contact structure by at least the first semiconductor path; a sensor contact structure included in the surface region and arranged for receiving an electrical potential of the sensor electrode.
Abstract:
A power semiconductor device includes an active region and an edge termination region surrounding the active region. A field plate structure arranged around the active region includes at least one electrically conductive track electrically connected to a first potential of a first load terminal at a first joint and, at a second joint, electrically connected to a second potential of a second load terminal. The track forms at least n crossings, wherein n is greater 5, with a straight virtual line that extends from the active region towards an edge of the edge termination region. The difference in potential between adjacent two crossings increases in at least 50% of the length of the virtual line, and/or the difference in potential within, with respect to the active region, the first 20% of the length of virtual line is less than 10% of the total difference in potential along the virtual line.
Abstract:
An embodiment relates to a method for manufacturing a semiconductor device. The method includes providing a semiconductor body including a first semiconductor region of a first conductivity type and a second semiconductor region of a second conductivity type interposed between the first semiconductor region and a first surface of the semiconductor body. The method further includes forming a first contact layer over the first surface of the semiconductor body. The first contact layer forms a direct electrical contact to the second semiconductor region. The method further includes forming a contact trench extending into the semiconductor body by removing at least a portion of the second semiconductor region. The method further includes forming a second contact layer in the contact trench. The second contact layer is directly electrically connected to the semiconductor body at a bottom side of the contact trench.
Abstract:
An embodiment relates to a method for manufacturing a semiconductor device. The method includes providing a semiconductor body including a first semiconductor region of a first conductivity type and a second semiconductor region of a second conductivity type interposed between the first semiconductor region and a first surface of the semiconductor body. The method further includes forming a first contact layer over the first surface of the semiconductor body. The first contact layer forms a direct electrical contact to the second semiconductor region. The method further includes forming a contact trench extending into the semiconductor body by removing at least a portion of the second semiconductor region. The method further includes forming a second contact layer in the contact trench. The second contact layer is directly electrically connected to the semiconductor body at a bottom side of the contact trench.