Abstract:
By thermal oxidation a field oxide layer is formed that lines first and second trenches that extend from a main surface into a semiconductor layer. After the thermal oxidation, field electrodes and trench gate electrodes of power transistor cells are formed in the first and second trenches. A protection cover including a silicon nitride layer is formed that covers a cell area with the first and second trenches. With the protection cover covering the cell area, planar gate electrodes of lateral transistors are formed in a support area of the semiconductor layer.
Abstract:
A semiconductor device includes a semiconductor body having opposite first and second surfaces. The semiconductor body includes a load current component having a load current transistor area and a sensor component having a sensor transistor area. The load current transistor area and the sensor transistor area share a same transistor unit construction. The load current transistor area includes first and second transistor area parts, and the sensor transistor area includes a third transistor area part. The first and the third transistor area parts differ from the second transistor area part between the first and the third transistor area parts by a load current transistor area element being absent in the second transistor area part. The second transistor area part is electrically disconnected from a parallel connection of the first and second transistor area parts by the load current transistor area element being absent in the second transistor area part.
Abstract:
A semiconductor device comprises a semiconductor body. The semiconductor body comprises insulated gate field effect transistor cells. At least one of the insulated gate field effect transistor cells comprises a source zone of a first conductivity type, a body zone of a second, complementary conductivity type, a drift zone of the first conductivity type, and a trench gate structure extending into the semiconductor body through the body zone along a vertical direction. The trench gate structure comprises a gate electrode separated from the semiconductor body by a trench dielectric. The trench dielectric comprises a source dielectric part interposed between the gate electrode and the source zone and a gate dielectric part interposed between the gate electrode and the body zone. The ratio of a maximum thickness of the source dielectric part along a lateral direction and the minimum thickness of the gate dielectric part along the lateral direction is at least 1.5.
Abstract:
An integrated circuit having field effect transistors and manufacturing method. One embodiment provides an integrated circuit including a first FET and a second FET. At least one of source, drain, gate of the first FET is electrically connected to the corresponding one of source, drain, gate of the second FET. At least one further of source, drain, gate of the first FET and the corresponding one further of source, drain, gate of the second FET are connected to a circuit element, respectively. A dopant concentration of a body along a channel of each of the first and second FETs has a peak at a peak location within the channel.
Abstract:
An integrated circuit having field effect transistors and manufacturing method. One embodiment provides an integrated circuit including a first FET and a second FET. At least one of source, drain, gate of the first FET is electrically connected to the corresponding one of source, drain, gate of the second FET. At least one further of source, drain, gate of the first FET and the corresponding one further of source, drain, gate of the second FET are connected to a circuit element, respectively. A dopant concentration of a body along a channel of each of the first and second FETs has a peak at a peak location within the channel.
Abstract:
A semiconductor device comprises a semiconductor body. The semiconductor body comprises insulated gate field effect transistor cells. At least one of the insulated gate field effect transistor cells comprises a source zone of a first conductivity type, a body zone of a second, complementary conductivity type, a drift zone of the first conductivity type, and a trench gate structure extending into the semiconductor body through the body zone along a vertical direction. The trench gate structure comprises a gate electrode separated from the semiconductor body by a trench dielectric. The trench dielectric comprises a source dielectric part interposed between the gate electrode and the source zone and a gate dielectric part interposed between the gate electrode and the body zone. The ratio of a maximum thickness of the source dielectric part along a lateral direction and the minimum thickness of the gate dielectric part along the lateral direction is at least 1.5.
Abstract:
A semiconductor device includes a semiconductor body having a first surface and a second surface opposite to the first surface. The semiconductor body includes a load current component having a load current transistor area and a sensor component including a sensor transistor area. The sensor transistor area has first and third transistor area parts differing from a second transistor area part between the first and third transistor area parts by a sensor transistor area element being absent in the second transistor area part. The second transistor area part is electrically disconnected from a parallel connection of the first and third transistor area parts by the sensor transistor area element being absent in the second transistor area part.
Abstract:
A semiconductor device includes a semiconductor body having opposite first and second surfaces. The semiconductor body includes a load current component having a load current transistor area and a sensor component having a sensor transistor area. The load current transistor area and the sensor transistor area share a same transistor unit construction. The load current transistor area includes first and second transistor area parts, and the sensor transistor area includes a third transistor area part. The first and the third transistor area parts differ from the second transistor area part between the first and the third transistor area parts by a load current transistor area element being absent in the second transistor area part. The second transistor area part is electrically disconnected from a parallel connection of the first and second transistor area parts by the load current transistor area element being absent in the second transistor area part.
Abstract:
A semiconductor device includes a semiconductor body having a first surface and a second surface opposite to the first surface. The semiconductor body includes a load current component having a load current transistor area and a sensor component including a sensor transistor area. The sensor transistor area has first and third transistor area parts differing from a second transistor area part between the first and third transistor area parts by a sensor transistor area element being absent in the second transistor area part. The second transistor area part is electrically disconnected from a parallel connection of the first and third transistor area parts by the sensor transistor area element being absent in the second transistor area part.
Abstract:
By thermal oxidation a field oxide layer is formed that lines first and second trenches that extend from a main surface into a semiconductor layer. After the thermal oxidation, field electrodes and trench gate electrodes of power transistor cells are formed in the first and second trenches. A protection cover including a silicon nitride layer is formed that covers a cell area with the first and second trenches. With the protection cover covering the cell area, planar gate electrodes of lateral transistors are formed in a support area of the semiconductor layer.