Abstract:
In one example, a display includes an array of display pixels. Each display pixel includes at least one light-emitting diode. At least one of the display pixels includes an image sensor.
Abstract:
A light pattern projector with a pattern mask to spatially modulate an intensity of a wideband illumination source, such as an LED, and a projector lens to reimage the spatially modulated emission onto regions of a scene that is to be captured with an image sensor. The projector lens may comprise a microlens array (MLA) including a first lenslet to reimage the spatially modulated emission onto a first portion of a scene, and a second lenslet to reimage the spatially modulated emission onto a first portion of a scene. The MLA may have a fly's eye architecture with convex curvature over a diameter of the projector lens in addition to the lenslet curvature. The pattern mask may be an amplitude mask comprising a mask pattern of high and low amplitude transmittance regions. In the alternative, the pattern mask may be a phase mask, such as a refractive or diffractive mask.
Abstract:
Systems, devices, and techniques related to projecting dynamic feature patterns onto a scene for use in stereoscopic imaging are discussed. Such techniques may include implementing a dynamic transmissive element in an optical path between a projector and the scene to modify a static pattern emitted from the projector to illuminate the scene with a dynamic pattern.
Abstract:
A light pattern projector with a pattern mask to spatially modulate an intensity of a wideband illumination source, such as an LED, and a projector lens to reimage the spatially modulated emission onto regions of a scene that is to be captured with an image sensor. The projector lens may comprise a microlens array (MLA) including a first lenslet to reimage the spatially modulated emission onto a first portion of a scene, and a second lenslet to reimage the spatially modulated emission onto a first portion of a scene. The MLA may have a fly's eye architecture with convex curvature over a diameter of the projector lens in addition to the lenslet curvature. The pattern mask may be an amplitude mask comprising a mask pattern of high and low amplitude transmittance regions. In the alternative, the pattern mask may be a phase mask, such as a refractive or diffractive mask.
Abstract:
A display, such as for a touch-sensitive communication device, can include a transparent cover glass, pixels that emit light through the cover glass, and multiple antennas positioned along respective paths in an inactive area between the pixels. The antennas do not obstruct the light produced by the pixels, and can therefore be composed of opaque materials, such as metallic thin films, without affecting the optical properties of the display. In some examples, several antennas can have the same size and shape but different orientations, so that a radio can switch between or among the antennas to optimize reception. In some examples, the antennas can have different sizes and/or shapes, so that the antennas can send and/or receive radio signals in different frequency ranges of the electromagnetic spectrum. In some examples, locating the antennas in the display can allow the device to include a metallic housing.
Abstract:
In one example, a display includes an array of display pixels. Each display pixel includes at least one light-emitting diode. At least one of the display pixels includes an image sensor.
Abstract:
A mechanism is described for facilitating interactive floating virtual representations of images at computing devices according to one embodiment. A method of embodiments, as described herein, includes receiving a request for a virtual representation of an image of a plurality of images, where the virtual representation includes a three-dimensional (3D) virtual representation that is capable of being floated in mid-air. The method may further include selecting the image to be presented via an image source located at a first angle from an imaging plate, and predicting a floating plane to be located at a second angle from the imaging plate, where the image is communicated from the image source to the floating plane via the imaging plate. The method may further include presenting the virtual representation of the image via the floating plane.
Abstract:
A light pattern projector with a pattern mask to spatially modulate an intensity of a wideband illumination source, such as an LED, and a projector lens to reimage the spatially modulated emission onto regions of a scene that is to be captured with an image sensor. The projector lens may comprise a microlens array (MLA) including a first lenslet to reimage the spatially modulated emission onto a first portion of a scene, and a second lenslet to reimage the spatially modulated emission onto a first portion of a scene. The MLA may have a fly's eye architecture with convex curvature over a diameter of the projector lens in addition to the lenslet curvature. The pattern mask may be an amplitude mask comprising a mask pattern of high and low amplitude transmittance regions. In the alternative, the pattern mask may be a phase mask, such as a refractive or diffractive mask.
Abstract:
A light pattern projector with a pattern mask to spatially modulate an intensity of a wideband illumination source, such as an LED, and a projector lens to reimage the spatially modulated emission onto regions of a scene that is to be captured with an image sensor. The projector lens may comprise a microlens array (MLA) including a first lenslet to reimage the spatially modulated emission onto a first portion of a scene, and a second lenslet to reimage the spatially modulated emission onto a first portion of a scene. The MLA may have a fly's eye architecture with convex curvature over a diameter of the projector lens in addition to the lenslet curvature. The pattern mask may be an amplitude mask comprising a mask pattern of high and low amplitude transmittance regions. In the alternative, the pattern mask may be a phase mask, such as a refractive or diffractive mask.