Abstract:
An apparatus is described. The apparatus includes a non volatile memory module for insertion into a rack implemented modular computer. The non volatile memory module includes a plurality of memory controllers. The non volatile memory includes respective non-volatile random access memory coupled to each of the memory controllers. The non volatile memory module includes a switch circuit to circuit switch incoming requests and outgoing responses between the rack's backplane and the plurality of memory controllers. The incoming requests are sent by one or more CPU modules of the rack implemented modular computer. The outgoing responses are sent to the one or more CPU modules.
Abstract:
Provided are a method, system, computer readable storage medium, and switch for configuring a switch to assign partitions in storage devices to compute nodes. A management controller configures the switch to dynamically allocate partitions of at least one of the storage devices to the compute nodes based on a workload at the compute node.
Abstract:
An identification is made that a link is to exit an active state, the link comprising a plurality of lanes. Parity information is maintained for the lanes based on data previously sent over the link, and an indication of the parity information is sent prior to the exit from the active state.
Abstract:
Provided are a method, system, computer readable storage medium, and switch for configuring a switch to assign partitions in storage devices to compute nodes. A management controller configures the switch to dynamically allocate partitions of at least one of the storage devices to the compute nodes based on a workload at the compute node.
Abstract:
Provided are a method, system, computer readable storage medium, and switch for configuring a switch to assign partitions in storage devices to compute nodes. A management controller configures the switch to dynamically allocate partitions of at least one of the storage devices to the compute nodes based on a workload at the compute node.