Abstract:
An electronic device connection system includes a first electrical device and a second electrical device. The first electrical device includes a plurality of electrical connectors disposed in, on, or about at least a portion of an exterior surface of the first electrical device. The second electrical device includes a plurality of electrical contacts disposed in, on, or about at least a portion of an exterior surface of the second electrical device. A mechanical compressor exerts a force on at least one of the first electrical device or the second electrical device such that the electrical connections on the first electrical device physically and conductively couple to the electrical contacts on the second electrical device. The device casing may function as the mechanical compressor. The electrical connectors and/or electrical contacts may include injection molded connectors that include a conductive material dispersed in a thermoplastic matrix.
Abstract:
High-speed data transmissions through a CPU socket are facilitated with CPU socket contacts that have a CPU socket contact body that improves bandwidth throughput. The CPU socket contact body is partially suspended from a CPU socket contact and may include a cavity. The CPU socket contact body includes capacitive impedance that substantially cancels an inductive impedance of the CPU socket contact. Canceling the inductive impedance causes the CPU socket contact to operate like an impedance-matched coaxial transmission line, which enables better bandwidth throughput than a non-impedance matched transmission line.
Abstract:
A mechanism is described for facilitating and employing a magnetic grid array according to one embodiment. A method of embodiments may include engaging, via magnetic force of a magnet, magnetic contacts of a magnetic grid array to substrate lands of a package substrate of an integrated circuit package of a computing system, and disengaging, via a removal lever, the magnetic contacts from the substrate lands.