Abstract:
Various systems and methods for implementing a context-driven connection protocol are described herein. A system for controlling wireless communication includes a motion detector to detect motion at a mobile device; and a wireless transceiver controller to allow a wireless connection to be established between the mobile device and a second device in response to the motion being detected.
Abstract:
In embodiments, apparatuses, methods, and computer-readable media are described that are associated with a context-based information presentation system (“CIP”). The CIP may be configured to modify presentation of information to a user during performance of a physical activity. The CIP may be configured to receive information describing the physical activity and to identify a context for the physical activity based on the received information. The identification of the context may be performed through application of one or more context rules to the information describing the physical activity received by the CIP. The CIP may be configured to modify presentation of information to the user based on the identified context. Other embodiments may be described and claimed.
Abstract:
Various systems and methods for implementing text enhancements in augmented reality content presented in a head-mounted display are described herein. A head-mounted display system for implementing enhancements in augmented reality content includes a see-through display device to display augmented reality content in a field of view to a user of the system, the augmented reality content in an initial format; an accelerometer; and a controller to: detect a trigger event, the trigger event based on motion of the head mounted display system as measured by the accelerometer; and present an enhanced version of the augmented reality content when the trigger event is detected.
Abstract:
Various systems and methods for implementing text functions in augmented reality are described herein. A system for implementing text functions in augmented reality includes a display to display a field of view to a user of the system; a gesture detection module to detect a selection gesture performed by a user of the system, the selection gesture defining a selection area in the field of view; a camera array to capture an image of the selection area; a text module to perform a text operation on text identified in the image; and a presentation module to present an indication of the text operation to the user.
Abstract:
Particular embodiments described herein provide for an electronic device that can be configured to determine that an unobtrusive gesture has been received on a first electronic device and send a signal to a second electronic device in response to the unobtrusive gesture. The first electronic device can also be configured to receive a signal from the second electronic device, determine an unobtrusive output in response to the signal, and generate an unobtrusive notification in response to the received signal. In an example, the first electronic device is a part of jewelry worn by a user.
Abstract:
Embodiments of a system and method for controlling a device charging on a wireless charger are generally described herein. A method may include disabling, in response to determining that the device is currently charging on the wireless charger, haptic feedback at the device, determining whether the device is in a night mode or a day mode, in response to determining that the device is in the night mode and currently charging on the wireless charger, disabling notifications of the device, and enabling, in response to determining that the device is in the day mode, the haptic feedback and the notifications when the device has been removed from the wireless charger.
Abstract:
Embodiments of a system and method for controlling a device charging on a wireless charger are generally described herein. A method may include disabling, in response to determining that the device is currently charging on the wireless charger, haptic feedback at the device, determining whether the device is in a night mode or a day mode, in response to determining that the device is in the night mode and currently charging on the wireless charger, disabling notifications of the device, and enabling, in response to determining that the device is in the day mode, the haptic feedback and the notifications when the device has been removed from the wireless charger.
Abstract:
Various systems and methods for implementing a context-driven connection protocol are described herein. A system for controlling wireless communication includes a motion detector to detect motion at a mobile device; and a wireless transceiver controller to allow a wireless connection to be established between the mobile device and a second device in response to the motion being detected.
Abstract:
Embodiments of a system and method for controlling a device charging on a wireless charger are generally described herein. A method may include disabling, in response to determining that the device is currently charging on the wireless charger, haptic feedback at the device, determining whether the device is in a night mode or a day mode, in response to determining that the device is in the night mode and currently charging on the wireless charger, disabling notifications of the device, and enabling, in response to determining that the device is in the day mode, the haptic feedback and the notifications when the device has been removed from the wireless charger.
Abstract:
Systems and techniques for an automatic event recorder are described herein. An input stream may be written to a memory buffer in an overwrite mode. The input stream may be received from a sensor array of a wearable device. A first portion of the input stream written to the memory buffer may be protected upon obtaining an indication of occurrence of a start event. The memory buffer may be configured to receive a second portion of the input stream in a write mode subsequent to the occurrence of the start event. The memory buffer may be reconfigured to receive a third portion of the input stream in the overwrite mode upon obtaining an indication of the occurrence of the stop event.