Abstract:
An optical fiber includes multiple optical waveguides configured in the fiber. An interferometric measurement system mitigates or compensates for the errors imposed by differences in a shape sensing optical fiber's response to temperature and strain. A 3-D shape and/or position are calculated from a set of distributed strain measurements acquired for a multi-core optical shape sensing fiber that compensates for these non-linear errors using one or more additional cores in the multicore fiber that react differently to temperature changes than the existing cores.
Abstract:
A pressure sensing pad includes a flexible planar layer having a two-dimensional sensing area, and an optical fiber embedded in the plane of the flexible planar layer traversing the two-dimensional sensing area in a particular configuration. At least one end of the fiber optic strain sensor has a connector that is connectable to an interferometric-based fiber optic interrogation and processing system. When the connector is connected to the an interferometric-based fiber optic interrogation and processing system and pressure is applied to the pressure sensing pad, a signal from the optical fiber is provided to and processed by the interferometric-based fiber optic interrogation and processing system to determine a two-dimensional pressure map for the two-dimensional sensing area.
Abstract:
An interferometric measurement system measures a spun optical fiber sensor that includes multiple optical cores configured in the fiber sensor. A calibration machine includes a calibration fixture having known dimensions, one or more automatically controllable actuators for wrapping the fiber sensor starting at one end of the fiber sensor onto a calibration fixture having known dimensions, and an actuator controller configured to control the one or more actuators with actuator control signals. Interferometric detection circuitry, coupled to the actuator controller and to the other end of the fiber sensor, detects measured interferometric pattern data associated with each of the multiple cores when the fiber sensor is wrapped onto the calibration fixture. Data processing circuitry determines compensation parameters that compensate for variations between an optimal configuration of the multiple cores and an actual configuration of the multiple cores in the fiber sensor based on the detected measured interferometric pattern data. The compensation parameters compensate subsequently-obtained measurement interferometric pattern data for the fiber sensor.
Abstract:
A fiber housing includes multiple shape sensing cores and a single optical core. A distal end of the fiber housing is positionable to direct the single optical core to a current point of an anatomical target. Collimated light over a first range of frequencies is projected from the single optical core to the current point. OFDR is used to detect reflected light scattered from the current point and to process the detected light to determine a distance to the current point. Light over a second range of frequencies is projected through the multiple shape sensing optical cores to the distal end of the fiber housing. OFDR is used to measure light reflected from the distal end of the fiber housing back through the multiple shape sensing optical cores and to process the measurement to determine a position in three dimensional space of the distal end of the fiber housing and a pointing direction of the distal end of the fiber housing. A position in three dimensional space of the current point is determined based on the determined position in three dimensional space of the distal end of the fiber housing, the pointing direction of the distal end of the fiber housing, and the determined distance.
Abstract:
A flexible tool includes an optical fiber including a proximal region, a distal region, an intermediate portion between the proximal region and the distal region and an bending region between the proximal region and the intermediate portion, wherein the intermediate portion is constrained to have a single degree of freedom that is translational substantially along an axis defined by the optical fiber at the intermediate portion. The optical fiber may be used to provide shape sensing of the flexible tool.