Abstract:
Embodiments for modifying a spring mass configuration are disclosed that minimize the effects of unwanted nonlinear motion on a MEMS sensor. The modifications include any or any combination of providing a rigid element between rotating structures of the spring mass configuration, tuning a spring system between the rotating structures and coupling an electrical cancellation system to the rotating structures. In so doing unwanted nonlinear motion such as unwanted 2nd harmonic motion is minimized.
Abstract:
Embodiments for modifying a spring mass configuration are disclosed that minimize the effects of unwanted nonlinear motion on a MEMS sensor. The modifications include any or any combination of providing a rigid element between rotating structures of the spring mass configuration, tuning a spring system between the rotating structures and coupling an electrical cancellation system to the rotating structures. In so doing unwanted nonlinear motion such as unwanted 2nd harmonic motion is minimized.
Abstract:
In a first aspect, the angular rate sensor comprises a substrate and a rotating structure anchored to the substrate. The angular rate sensor also includes a drive mass anchored to the substrate and an element coupling the drive mass and the rotating structure. The angular rate sensor further includes an actuator for driving the drive mass into oscillation along a first axis in plane to the substrate and for driving the rotating structure into rotational oscillation around a second axis normal to the substrate; a first transducer to sense the motion of the rotating structure in response to a Coriolis force in a sense mode; and a second transducer to sense the motion of the sensor during a drive mode. In a second aspect the angular rate sensor comprises a substrate and two shear masses which are parallel to the substrate and anchored to the substrate via flexible elements.
Abstract:
A system and method in accordance with an embodiment reduces the cross-axis sensitivity of a gyroscope. This is achieved by building a gyroscope using a mechanical transducer that comprises a spring system that is less sensitive to fabrication imperfection and optimized to minimize the response to the rotations other than the intended input rotation axis. The longitudinal axes of the first and second flexible elements are parallel to each other and parallel to the first direction
Abstract:
A gyroscope is disclosed. The gyroscope comprises a substrate; and a guided mass system. The guided mass system comprises proof-mass and guiding arm. The proof-mass and the guiding arm are disposed in a plane parallel to the substrate. The proof-mass is coupled to the guiding arm. The guiding arm is also coupled to the substrate through a spring. The guiding arm allows motion of the proof-mass to a first direction in the plane. The guiding arm and the proof-mass rotate about a first sense axis. The first sense axis is in the plane and parallel to the first direction. The gyroscope includes an actuator for vibrating the proof-mass in the first direction. The gyroscope also includes a transducer for sensing motion of the proof-mass-normal to the plane in response to angular velocity about a first input axis that is in the plane and orthogonal to the first direction.
Abstract:
A gyroscope comprises a substrate and a guided mass system. The guided mass system comprises proof masses and guiding arms disposed in a plane parallel to the substrate. The proof masses are coupled to the guiding arm by springs. The guiding arm is coupled to the substrate by springs. At least one of the proof-masses is directly coupled to the substrate by at least one anchor via a spring system. The gyroscope also comprises an actuator for vibrating one of the proof-masses in the first direction, which causes another proof mass to rotate in the plane. Finally, the gyroscope also includes transducers for sensing motion of the guided mass system in response to angular velocities about a single axis or multiple input axes.
Abstract:
A system and method in accordance with an embodiment reduces the cross-axis sensitivity of a gyroscope. This is achieved by building a gyroscope using a mechanical transducer that comprises a spring system that is less sensitive to fabrication imperfection and optimized to minimize the response to the rotations other than the intended input rotation axis. The longitudinal axes of the first and second flexible elements are parallel to each other and parallel to the first direction
Abstract:
Embodiments for modifying a spring mass configuration are disclosed that minimize the effects of unwanted nonlinear motion on a MEMS sensor. The modifications include any or any combination of providing a rigid element between rotating structures of the spring mass configuration, tuning a spring system between the rotating structures and coupling an electrical cancellation system to the rotating structures. In so doing unwanted nonlinear motion such as unwanted 2nd harmonic motion is minimized