Abstract:
The invention provides a method of producing a metal oxyhydride, capable of synthesizing the metal oxyhydride under reaction conditions close to atmospheric pressure, and excellent in productivity and cost. The method of producing a metal oxyhydride of the present invention includes reacting an oxide with a metal hydride in a hydrogen atmosphere. A non-oxygen element constituting the oxide comprises only one kind of non-oxygen element. A pressure condition of the reaction is 0.1 to 0.9 MPa, and a temperature of the reaction is 500 to 1000° C.
Abstract:
The invention provides a Laves phase intermetallic compound having a composition represented by general formula ARu2 (A is Y, Sc, or at least one element selected from lanthanoid elements excluding Ce), the crystallite size thereof being 1 nm to 100 nm; a catalyst including the intermetallic compound as an active ingredient; and a method for producing ammonia using the same.
Abstract:
The present invention is related to an oxynitride-hydride which is capable of achieving both stabilization and improvement of catalyst performance when used as a support, and the oxynitride-hydride can be easily synthesized. The oxynitride-hydride is represented by the following general formula (1),
AnBmOl-xNyHz (1)
wherein in the general formula (1), x represents a number represented by 0.1≤x≤3.5; y represents a number represented by 0.1≤y≤2.0; and z represents a number represented by 0.1≤z≤2.0.
Abstract:
The invention is related to a layered double hydroxide electride which can be produced without high-temperature treatment, and a production method of which cost can be reduced. The layered double hydroxide electride contains electrons between layers and has an electron density of 2.0×1018 cm−3 or more. The method of producing the layered double hydroxide electride includes a step of mixing a starting layered double hydroxide with an electron exchanger for exchanging anions existing between layers of the starting layered double hydroxide for electrons to produce the layered double hydroxide electride.
Abstract:
Provided are an intermetallic compound having high stability and high activity, and a catalyst using the same. A hydrogen storage/release material containing an intermetallic compound represented by formula (1): RTX . . . (1) wherein R represents a lanthanoid element, T represents a transition metal in period 4 or period 5 in the periodic table, and X represents Si, Al or Ge.
Abstract:
Provided are a supported metal material showing high catalytic activity, a supported metal catalyst, a method of producing ammonia and a method of producing hydrogen using the supported metal catalyst, and a method of producing a cyanamide compound. The supported metal material of the present invention is a supported metal material in which a transition metal is supported on a support, and the support is a cyanamide compound represented by the following general formula (1); MCN2 (1), wherein M represents a group II element of the periodic table, and the specific surface area of the cyanamide compound is 1 m2g−1 or more.
Abstract:
The method for producing a perovskite metal oxynitride of the present invention, comprises: a hydrogenation step (A) of forming a perovskite oxyhydride in which an oxide ion (O2−) and a hydride ion (H−) coexist, by reducing a perovskite oxide through a reductive oxygen elimination reaction using a metal hydride; and a nitriding step (B) of forming a perovskite oxynitride containing a nitride ion (N3−) by heat-treating the perovskite oxyhydride in the presence of a nitrogen source substance at a temperature of 300° C. or higher and 600° C. or lower and exchanging the hydride ion (H−) for a nitride ion (N3−).
Abstract:
The present invention provides a supported metal catalyst, a method for synthesizing ammonia using said catalyst, and a supported metal material in which a transition metal is supported on a support, wherein the support is a metal hydride represented by general formula (1): XHn . . . (1); and in general formula (1), X represents at least one selected from the group consisting of atoms from Groups 2 and 3, and lanthanoid atoms, and n is in a range of 2
Abstract:
A switching element of LCDs or organic EL displays which uses a thin film transistor device, includes: a drain electrode, a source electrode, a channel layer contacting the drain electrode and the source electrode, wherein the channel layer comprises indium-gallium-zinc oxide having a transparent, amorphous state of a composition equivalent to InGaO3(ZnO)m (wherein m is a natural number less than 6) in a crystallized state, and the channel layer has a semi-insulating property represented by an electron mobility of more than 1 cm2/(V·sec) and an electron carrier concentration is less than 1018/cm3, a gate electrode, and a gate insulating film positioned between the gate electrode and the channel layer.
Abstract:
The invention related to a material that can stably hold an imide anion (NH2−) therein even in the atmosphere or in a solvent, and a method for synthesizing the material and a use of the material. A mayenite-type compound into which imide anions are incorporated at a concentration of 1×1018 cm−3 or more are provided. The mayenite-type compound can be produced by heating a mayenite-type compound including electrons or free oxygen ions in a cage thereof, in liquefied ammonia at 450 to 700° C. and at a pressure of 30 to 100 MPa. The compound has properties such that active imide anions can be easily incorporated into the compound and the active imide anions can be easily released in the form of ammonia from the compound, and the compound has chemical stability.