Abstract:
A hot-pressed member has a predetermined chemical composition. In the hot-pressed member, a steel sheet has a microstructure in which a prior austenite average grain diameter is 8 μm or less, and martensite is present in a volume fraction of 95% or greater in a region within 30 μm of a surface; a Ni diffusion region having a thickness of 0.5 μm or greater exists in a surface layer; a standard deviation of Vickers hardness values is 35 or less; Mndif (mass %) in a sheet thickness direction ≤0.20, where Mndif (mass %) is a degree of Mn segregation; and a tensile strength is 1780 MPa or greater.
Abstract:
A galvannealed steel sheet having a galvanized layer on a surface thereof is provided, having a composition which contains C: 0.10% to 0.35%, Si: 0.3% to 3.0%, Mn: 0.5% to 3.0%, P: 0.001% to 0.10%, Al: 0.01% to 3.00%, and S: 0.200% or less on a mass basis, the remainder being Fe and incidental impurities. The steel sheet has a SiC/SiO2 ratio of more than 0.20, the SiC/SiO2 ratio being a ratio of SiC amount to SiO2 amount at a depth of 1 μm or less in the steel sheet from an interface between the steel sheet and the galvanized layer, and Fe in the galvanized layer constitutes 8% to 13% by mass.
Abstract:
A hot-dip galvanized steel sheet having a good appearance and good adhesion to a coating, the hot-dip galvanized steel sheet having a composition containing, on a mass basis: C: 0.08% or more and less than 0.20%, Si: 0.1% to 3.0%, Mn: 0.5% to 3.0%, P: 0.001% to 0.10%, Al: 0.01% to 3.00%, and S: 0.200% or less, a remainder being Fe and incidental impurities, wherein the hot-dip galvanized steel sheet includes an internal oxidation layer and a decarburized layer, the internal oxidation layer having a thickness of 5 μm or less, the decarburized layer having a thickness of 20 μm or less, and 50% or more by area of the internal oxidation layer is composed of a Si oxide containing Fe and/or Mn represented by Fe2XMn2-2XSiOY, wherein X ranges from 0 to 1, and Y is 3 or 4.
Abstract:
A hot-dip galvanized steel sheet having a good appearance and good adhesion to a coating, the hot-dip galvanized steel sheet having a composition including, on a mass basis: C: 0.20% to 0.50%, Si: 0.1% to 3.0%, Mn: 0.5% to 3.0%, P: 0.001% to 0.10%, Al: 0.01% to 3.00%, and S: 0.200% or less, a remainder being Fe and incidental impurities, wherein the hot-dip galvanized steel sheet includes an internal oxidation layer and a decarburized layer, the internal oxidation layer having a thickness of 4 μm or less on a ferrite side from an interface between ferrite and a galvanized layer, the decarburized layer having a thickness of 16 μm or less on the ferrite side from the interface between the ferrite and the galvanized layer, and 50% or more by area of the internal oxidation layer is composed of a Si oxide containing Fe and/or Mn represented by Fe2XMn2-2XSiOY, wherein X ranges from 0 to 1, and Y is 3 or 4.
Abstract:
A hot-pressed member, a steel sheet for hot pressing, and methods for producing the hot-pressed member and the steel sheet for hot pressing. The hot-pressed member includes a steel sheet and a Zn-based alloy coated layer disposed on at least one surface of the steel sheet. The Zn-based alloy coated layer includes a solid solution phase including Zn with the balance being Fe and incidental impurities, an intermetallic compound phase including Fe with the balance being Zn and incidental impurities, and an oxide layer including Zn. The oxide layer serves as an uppermost layer of the Zn-based alloy coated layer and splits the intermetallic compound phase. The split density in at least one cross-section of the oxide layer per unit cross-section is 10 split positions/mm or more.
Abstract:
A hot-pressed member has a predetermined chemical composition. In the hot-pressed member, a steel sheet has a microstructure in which a prior austenite average grain diameter is 8 μm or less, and martensite is present in a volume fraction of 95% or greater in a region within 30 μm of a surface; a Ni diffusion region having a thickness of 0.5 μm or greater exists in a surface layer; a standard deviation of Vickers hardness values is 35 or less; Mndif (mass %) in a sheet thickness direction ≤0.20, where Mndif (mass %) is a degree of Mn segregation; and a tensile strength is 1780 MPa or greater.
Abstract:
A galvannealed steel sheet having a galvanized layer on a surface thereof is provided, having a composition which contains C: 0.10% to 0.35%, Si: 0.3% to 3.0%, Mn: 0.5% to 3.0%, P: 0.001% to 0.10%, Al: 0.01% to 3.00%, and S: 0.200% or less on a mass basis, the remainder being Fe and incidental impurities. The steel sheet has a SiC/SiO2 ratio of more than 0.20, the SiC/SiO2 ratio being a ratio of SiC amount to SiO2 amount at a depth of 1 μm or less in the steel sheet from an interface between the steel sheet and the galvanized layer, and Fe in the galvanized layer constitutes 8% to 13% by mass.
Abstract:
A method for manufacturing a galvanized steel sheet includes heating a base steel sheet in a heating zone such that the surface of the base steel sheet is heated at a temperature of 600° C. or higher and 790° C. or lower while a furnace temperature T° C. in the heating zone of an annealing furnace is controlled based on the water vapor partial pressure PH2Oin Air of air fed into the heating zone, the base steel sheet having a chemical composition consisting of, by mass %, C: 0.05% or more and 0.25% or less, Si: 0.1% or more and 3.0% or less, Mn: 0.5% or more and 3.0% or less, P: 0.001% or more and 0.10% or less, Al: 0.01% or more and 3.00% or less, S: 0.200% or less, and the balance being Fe and inevitable impurities, heating the base steel sheet in the heating zone such that the surface of the base steel sheet is heated at a temperature of 630° C. or higher and 850° C. or lower in an atmosphere containing hydrogen gas having a partial pressure PH2O of 1000 Pa or more and 50000 Pa or less, water vapor gas having a partial pressure PH2O of 610 Pa or less, and the balance being N2 and inevitable impurities, and galvanizing the base steel sheet.
Abstract:
A hot-dip galvanized steel sheet having a good appearance and good adhesion to a coating, the hot-dip galvanized steel sheet having a composition including, on a mass basis: C: 0.20% to 0.50%, Si: 0.1% to 3.0%, Mn: 0.5% to 3.0%, P: 0.001% to 0.10%, Al: 0.01% to 3.00%, and S: 0.200% or less, a remainder being Fe and incidental impurities, wherein the hot-dip galvanized steel sheet includes an internal oxidation layer and a decarburized layer, the internal oxidation layer having a thickness of 4 μm or less, the decarburized layer having a thickness of 16 μm or less, and 50% or more by area of the internal oxidation layer is composed of a Si oxide containing Fe and/or Mn represented by Fe2XMn2-2XSiOY, wherein X ranges from 0 to 1, and Y is 3 or 4.
Abstract:
Provided is a hot-pressed member that combines both high strength of 1850 MPa or more in TS and excellent delayed fracture resistance. A hot-pressed member comprises: a predetermined chemical composition; a microstructure in which a prior austenite average grain size is 8 μm or less, a volume fraction of martensite is 95% or more, and a volume fraction of granular carbide of 0.1 μm or more in grain size is 0.10% to 4.0%; a Ni diffusion region of 2.0 μm or more in a depth direction in a surface layer; and a tensile strength of 1850 MPa or more.