Abstract:
A method for driving a display device includes stopping a display operation of a display based on a presence or absence of a signal indicating an off operation of a main power switch of the display. The method further includes applying a recovery voltage across a gate and source of a driving transistor in the display based on a threshold voltage shift of the driving transistor. The threshold voltage shift is determined during a stopped state of the display operation of the display. The stopped state of the display operation of the display occurs prior to starting the display operation of the display.
Abstract:
A semiconductor device includes a gate electrode, a semiconductor film, and a conductive film. The semiconductor film includes an oxide semiconductor material. The semiconductor film includes a channel region, a low-resistance region, and an intermediate region. The channel region is opposed to the gate electrode. The low-resistance region has a lower electric resistance than the channel region. The intermediate region is provided between the low-resistance region and the channel region. The conductive film is provided selectively in contact with the low-resistance region of the semiconductor film.
Abstract:
A semiconductor device includes a substrate, a first wiring line, a semiconductor film, a second wiring line, and an insulating film. The substrate includes first, second, and third regions provided adjacently in this order in a predetermined direction. The first wiring line is provided on the substrate and provided in each of the first, second, and third regions. The semiconductor film has a low-resistance region in at least a portion thereof. The semiconductor film is provided between the first wiring line and the substrate in the first region, and is in contact with the first wiring line in the second region. The second wiring line is provided at a position closer to the substrate than the semiconductor film, and is in contact with the first wiring line in the third region. The insulating film is provided between the first wiring line and the semiconductor film in the first region.
Abstract:
A display device correction method performed by a control unit that performs display control on an organic electroluminescent (EL) panel including a plurality of display pixels, in an organic EL display which includes the organic EL panel and the control unit. The display device correction method includes: obtaining a cumulative value of a pixel signal supplied to a drive transistor which is included in a current pixel to be processed among the plurality of display pixels and supplies drive current according to the pixel signal to an organic EL element (OEL); calculating a shift amount of a threshold voltage of the drive transistor, using the cumulative value; calculating an amount of change in mobility, using the shift amount; and calculating a correction parameter for correcting a pixel signal, using the amount of change in mobility.
Abstract:
A thin film transistor substrate includes: a substrate; and a first thin film transistor and a second thin film transistor that are disposed on the substrate. The first thin film transistor includes a first gate electrode and a first oxide semiconductor layer that is used as a channel. The second thin film transistor includes a second gate electrode and a second oxide semiconductor layer that is used as a channel. The first oxide semiconductor layer includes a first oxide semiconductor material that is different in mobility from a second oxide semiconductor material that the second oxide semiconductor layer includes.
Abstract:
Methods of fabricating a thin-film transistor are provided. The methods include forming a gate electrode above a substrate, a gate insulating layer above the gate electrode, a non-crystalline silicon layer above the gate insulating layer, and a channel protective layer above the non-crystalline silicon layer. The non-crystalline silicon layer and the channel protective layer are processed to form a projecting part. The projecting part has an upper layer composed of the channel protective layer and a lower layer composed of the non-crystalline silicon layer. The projecting part and portions of the non-crystalline silicon layer on sides of the projecting part are irradiated with a laser beam to crystallize at least the non-crystalline silicon layer in the projecting part. An absorptance of the non-crystalline silicon layer for the laser beam is greater in the projecting part than in the portions on the sides of the projecting part.
Abstract:
A display is provided that includes a display having a light-emitting element and a drive transistor, which supplies a current to the light-emitting element causing the light-emitting element to emit light. The display also includes a signal line driving circuit that supplies a signal voltage applied between a gate and a source of the drive transistor, and a control circuit that calculates an amount of threshold voltage shift of the drive transistor on the basis of an amount of deterioration of a threshold voltage of the drive transistor during a deterioration period, and corrects the signal voltage in accordance with the amount of threshold voltage shift.
Abstract:
A display device includes a display unit including luminescence pixels each including a luminescence element and a driving transistor configured to supply a current to the luminescence element to cause the element to emit light, a signal line driving circuit configured to supply a voltage applied between a gate and a source of the driving transistor, and a control circuit configured to apply a certain voltage between the gate and the source of the driving transistor by controlling the signal line driving circuit and the display unit when a power supply to the signal line driving circuit is stopped. The control circuit applies the certain voltage between the gate and the source of the driving transistor so that a recovery of a shift amount of a threshold voltage of the driving transistor is suppressed, the recovery being made when the power supply to the signal line driving circuit is stopped.
Abstract:
A display panel includes a substrate, a display element, a plurality of pixels arranged in a matrix, a drive circuit that drives the display element, a switching transistor in each of the plurality of pixels and selectively performs switching on the pixel that is to be caused to emit light, a first drive transistor in each of the plurality of pixels and drives a light-emitting element in the pixel, and a second drive transistor in the drive circuit. The switching transistor that is in each of the plurality of pixels, the first drive transistor that is in each of the plurality of pixels, and the second drive transistor in the drive circuit include oxide semiconductors. The switching transistor in each of the plurality of pixels and the second drive transistor in the drive circuit have a higher mobility than the first drive transistor in each of the plurality of pixels.
Abstract:
A thin-film semiconductor device includes: a substrate; a gate electrode above the substrate; a gate insulation film above the gate electrode; a channel layer above the gate insulation film, the channel layer having a raised part; a channel protection layer over the raised part of the channel layer, the channel protection layer comprising an organic material, and the organic material including silicon, oxygen, and carbon; an interface layer at an interface between a top surface of the raised part of the channel layer and the channel protection layer, and comprises at least carbon and silicon that derive from the organic material; and a source electrode and a drain electrode each provided over a top surface and a side surface the channel protection layer, a side surface of the interface layer, a side surface of the raised part of the channel layer, and a top surface of the channel layer.