摘要:
A laterally diffused metal-oxide-semiconductor transistor device includes a substrate having a first conductivity type with a semiconductor layer formed over the substrate. A source region and a drain extension region of the first conductivity type are formed in the semiconductor layer. A body region of a second conductivity type is formed in the semiconductor layer. A conductive gate is formed over a gate dielectric layer that is formed over a channel region. A drain contact electrically connects the drain extension region to the substrate and is laterally spaced from the channel region. The drain contact includes a highly-doped drain contact region formed between the substrate and the drain extension region in the semiconductor layer, wherein a topmost portion of the highly-doped drain contact region is spaced from the upper surface of the semiconductor layer. A source contact electrically connects the source region to the body region.
摘要:
A semiconductor device includes a substrate having a first conductivity type and a semiconductor layer formed over the substrate and having lower and upper surfaces. A laterally diffused metal-oxide-semiconductor (LDMOS) transistor device is formed over the substrate and includes a source region of the first conductivity type and a drain extension region of the first conductivity type formed in the semiconductor layer proximate the upper surface of the semiconductor layer, and a drain contact electrically connecting the drain extension region to the substrate. A Schottky diode is formed over the substrate and includes at least one doped region of the first conductivity type formed in the semiconductor layer proximate to the upper surface, an anode contact forming a Schottky barrier with the at least one doped region, and a cathode contact laterally spaced from the anode contact and electrically connecting at least one doped region to the substrate.
摘要:
A laterally diffused metal-oxide-semiconductor transistor device includes a substrate having a first conductivity type with a semiconductor layer formed over the substrate. A source region and a drain extension region of the first conductivity type are formed in the semiconductor layer. A body region of a second conductivity type is formed in the semiconductor layer. A conductive gate is formed over a gate dielectric layer that is formed over a channel region. A drain contact electrically connects the drain extension region to the substrate and is laterally spaced from the channel region. The drain contact includes a highly-doped drain contact region formed between the substrate and the drain extension region in the semiconductor layer, wherein a topmost portion of the highly-doped drain contact region is spaced from the upper surface of the semiconductor layer. A source contact electrically connects the source region to the body region.
摘要:
A laterally diffused metal-oxide-semiconductor transistor device includes a substrate having a first conductivity type with a semiconductor layer formed over the substrate. A source region and a drain extension region of the first conductivity type are formed in the semiconductor layer. A body region of a second conductivity type is formed in the semiconductor layer. A conductive gate is formed over a gate dielectric layer that is formed over a channel region. A drain contact electrically connects the drain extension region to the substrate and is laterally spaced from the channel region. The drain contact includes a highly-doped drain contact region formed between the substrate and the drain extension region in the semiconductor layer, wherein a topmost portion of the highly-doped drain contact region is spaced from the upper surface of the semiconductor layer. A source contact electrically connects the source region to the body region.
摘要:
A semiconductor device includes a substrate having a first conductivity type and a semiconductor layer formed over the substrate and having lower and upper surfaces. A laterally diffused metal-oxide-semiconductor (LDMOS) transistor device is formed over the substrate and includes a source region of the first conductivity type and a drain extension region of the first conductivity type formed in the semiconductor layer proximate the upper surface of the semiconductor layer, and a drain contact electrically connecting the drain extension region to the substrate. A Schottky diode is formed over the substrate and includes at least one doped region of the first conductivity type formed in the semiconductor layer proximate to the upper surface, an anode contact forming a Schottky barrier with the at least one doped region, and a cathode contact laterally spaced from the anode contact and electrically connecting at least one doped region to the substrate.
摘要:
A LDMOS transistor comprises a trench formed through the epitaxial layer at least to the top surface of the substrate, the trench having a bottom surface and a sidewall contacting the source region and the portion of the channel region extending under the source region. A first insulating layer is formed over the upper surface and sidewall surfaces of the conductive gate. A continuous layer of conductive material forming a source contact and a gate shield electrode is formed along the bottom surface and the sidewall of the trench and over the first insulating layer to cover the top and sidewall surfaces of the conductive gate. A second insulating layer is formed over an active area of the transistor, including over the continuous layer of conductive material and filling the trench. A drain electrode can extend over the second insulating layer to substantially cover the active area.
摘要:
A laterally diffused metal-oxide-semiconductor (LDMOS) transistor device includes a doped substrate having an epitaxial layer thereover having source and drain implant regions and body and lightly doped drain regions formed therein. The channel region and lightly doped drain regions are doped to a depth to abut the top surface of the substrate. In alternative embodiments, a buffer region of the second conductivity type and having dopant concentration greater than or equal to about the channel region is formed over the top surface of the substrate between the top surface of the substrate and the channel region and lightly doped drain region, wherein the channel region and lightly doped drain regions are doped to a depth to abut the buffer region.
摘要:
A laterally diffused metal-oxide-semiconductor transistor device includes a substrate having a first conductivity type with a semiconductor layer formed over the substrate. A source region and a drain extension region of the first conductivity type are formed in the semiconductor layer. A body region of a second conductivity type is formed in the semiconductor layer. A conductive gate is formed over a gate dielectric layer that is formed over a channel region. A drain contact electrically connects the drain extension region to the substrate and is laterally spaced from the channel region. The drain contact includes a highly-doped drain contact region formed between the substrate and the drain extension region in the semiconductor layer, wherein a topmost portion of the highly-doped drain contact region is spaced from the upper surface of the semiconductor layer. A source contact electrically connects the source region to the body region.
摘要:
A power MOSFET is formed in a semiconductor device with a parallel combination of a shunt resistor and a diode-connected MOSFET between a gate input node of the semiconductor device and a gate of the power MOSFET. A gate of the diode-connected MOSFET is connected to the gate of the power MOSFET. Source and drain nodes of the diode-connected MOSFET are connected to a source node of the power MOSFET through diodes. The drain node of the diode-connected MOSFET is connected to the gate input node of the semiconductor device. The source node of the diode-connected MOSFET is connected to the gate of the power MOSFET. The power MOSFET and the diode-connected MOSFET are integrated into the substrate of the semiconductor device so that the diode-connected MOSFET source and drain nodes are electrically isolated from the power MOSFET source node through a pn junction.
摘要:
An LDMOS device comprises a substrate having a first conductivity type and a lightly doped epitaxial layer thereon having an upper surface. Source and drain regions of the first conductivity type are formed in the epitaxial layer along with a channel region of a second conductivity type formed therebetween. A conductive gate is formed over a gate dielectric layer. A drain contact electrically connects the drain region to the substrate, comprising a first trench formed from the upper surface of the epitaxial layer to the substrate and having a side wall along the epitaxial layer, a highly doped region of the first conductivity type formed along the side wall of the first trench, and a drain plug in the first trench adjacent the highly doped region. A source contact is provided and an insulating layer is formed between the conductive gate and the source contact.