Abstract:
The fluidic system 10 of the preferred embodiment includes a sheath pump 12 to pump sheath fluid 14 from a sheath container 16 through a sample port 34 into an interrogation zone 18 and a waste pump 20 to pump the sheath fluid 14 and a sample fluid 26 as waste fluid 22 from the interrogation zone 18 into a waste container 24, and a processor 30 to calculate a time window based on the flow rate of the sample fluid 26. Preferably the processor 30 also calculates a time window for the sample fluid to reach the interrogation zone 18 from the sample port 34 based on the flow rate of the sample fluid 26. The interrogation zone 18 functions to provide a location for the fluidic system 10 and an optical analysis system 32 of the flow cytometer to cooperatively facilitate the analysis of the sample fluid 26.
Abstract:
A method for detecting fluorochromes in a flow cytometer, including: receiving a sample including particles each tagged with at least one of a first fluorochrome and a second fluorochrome, in which the first and second fluorochromes having distinct spillover coefficients; detecting the particles, including detecting the first and second fluorochromes with a first detector and a second detector; forming a data set for detected particles based on the detection of the first and second fluorochromes; characterizing a detected spillover coefficient for each detected fluorochrome from the data set; and sorting the detected particles into predicted fluorochrome populations based on the detected spillover coefficients. A system for detecting fluorochromes in a flow cytometer, including a flow cell, a fixed gain detection system, and a processor that generates a detected spillover coefficient for each detected particle and sorts the detected particle into predicted fluorochrome populations based on the detected spillover coefficient.
Abstract:
A method for cleaning a fluidic system of a flow cytometer having a sheath pump to pump sheath fluid towards an interrogation zone and a waste pump to pump the sheath fluid and a sample fluid as waste fluid from the interrogation zone, wherein the sheath pump and/or the waste pump draw sample fluid into the flow cytometer through a drawtube towards the interrogation zone. The method includes controlling the sheath pump and the waste pump to cooperatively flush a fluid out through the drawtube, thereby cleaning the fluidic system of the flow cytometer.
Abstract:
A system for a flow cytometer that collects data for a sample prepared with a plurality of fluorochromes that includes a fixed gain detection system that collects data for a plurality of fluorescence channels, fluorochrome compensation factors for a plurality of fluorochromes types, and a computer system that has an interface that gathers fluorochrome information of the sample and an analysis program that compensates for spectral spillover in the collected data. The fixed gain detection system preferably has a wide dynamic range. A fluorochrome compensation factor preferably remains constant for a fixed gain detection system. The analysis program preferably uses the fluorochrome compensation factors to compensate for spectral spillover.
Abstract:
A system and method for a flow cytometer system including a sheath pump that pumps sheath fluid from a sheath container into an interrogation zone, a waste pump that pumps waste fluid from the interrogation zone into a waste container, wherein the sheath pump and waste pump cooperatively and simultaneously draw sample fluid from a sample container into the interrogation zone, a controller that adjusts the flow rate of the sample fluid from the sample container into the interrogation zone, and a sensor system that coordinates with the controller to measure the amount of sample fluid in the sample container when the controller substantially pauses the sample fluid flow from the sample container into the interrogation zone. The system may further include a processor that monitors a measured volume of sample fluid introduced into the flow cytometer and an expected sample volume.
Abstract:
A system and method for a flow cytometer system including a prepared sample fluid with reference beads; an interrogation zone that analyzes the prepared sample fluid; a peristaltic pump system that draws the sample fluid through the interrogation zone; and a processor that monitors a measured volume of sample fluid sampled by the peristaltic pump system and an expected sample volume based on data generated by the analysis of the sample fluid. A system and method is additionally described using an alternative volume sensing fluidic system.
Abstract:
A method for detecting fluorochromes in a flow cytometer, including: receiving a sample including particles each tagged with at least one of a first fluorochrome and a second fluorochrome, in which the first and second fluorochromes having distinct spillover coefficients; detecting the particles, including detecting the first and second fluorochromes with a first detector and a second detector; forming a data set for detected particles based on the detection of the first and second fluorochromes; characterizing a detected spillover coefficient for each detected fluorochrome from the data set; and sorting the detected particles into predicted fluorochrome populations based on the detected spillover coefficients. A system for detecting fluorochromes in a flow cytometer, including a flow cell, a fixed gain detection system, and a processor that generates a detected spillover coefficient for each detected particle and sorts the detected particle into predicted fluorochrome populations based on the detected spillover coefficient.
Abstract:
A system and method for a flow cytometer system including a prepared sample fluid with reference beads; an interrogation zone that analyzes the prepared sample fluid; a peristaltic pump system that draws the sample fluid through the interrogation zone; and a processor that monitors a measured volume of sample fluid sampled by the peristaltic pump system and an expected sample volume based on data generated by the analysis of the sample fluid. A system and method is additionally described using an alternative volume sensing fluidic system.
Abstract:
A system for a flow cytometer that collects data for a sample prepared with a plurality of fluorochromes that includes a fixed gain detection system that collects data for a plurality of fluorescence channels, fluorochrome compensation factors for a plurality of fluorochromes types, and a computer system that has an interface that gathers fluorochrome information of the sample and an analysis program that compensates for spectral spillover in the collected data. The fixed gain detection system preferably has a wide dynamic range. A fluorochrome compensation factor preferably remains constant for a fixed gain detection system. The analysis program preferably uses the fluorochrome compensation factors to compensate for spectral spillover.
Abstract:
The fluidic system 10 of the preferred embodiment includes a sheath pump 12 to pump sheath fluid 14 from a sheath container 16 through a sample port 34 into an interrogation zone 18 and a waste pump 20 to pump the sheath fluid 14 and a sample fluid 26 as waste fluid 22 from the interrogation zone 18 into a waste container 24, and a processor 30 to calculate a time window based on the flow rate of the sample fluid 26. Preferably the processor 30 also calculates a time window for the sample fluid to reach the interrogation zone 18 from the sample port 34 based on the flow rate of the sample fluid 26. The interrogation zone 18 functions to provide a location for the fluidic system 10 and an optical analysis system 32 of the flow cytometer to cooperatively facilitate the analysis of the sample fluid 26.