摘要:
Provided are a nonvolatile memory device and a method for manufacturing the same. The nonvolatile memory device may include a semiconductor substrate, a floating gate, a second insulation layer, a third insulation layer, a control gate, and a common source line. The semiconductor substrate may have an active region limited by a device isolation region. The floating gate may be formed on the active region with a first insulation layer between the floating gate and the active region. The second insulation layer covers one side of the floating gate, and the third insulation layer covers the floating gate and the second insulation layer. The control gate may be formed on the other side of the floating gate with a fourth insulation layer between the control gate and the floating gate. The common source line may be formed in a portion of the substrate that is located under the second insulation layer.
摘要:
A method of fabricating a compound device includes forming a first gate insulating pattern on a semiconductor substrate including a first region and a second region, forming a second gate insulating layer on the first gate insulating pattern, and after forming the second gate insulating layer, forming a well in the second region of the semiconductor substrate.
摘要:
A semiconductor device includes a substrate divided into a memory cell region and a logic region. A split gate electrode structure is formed in a memory cell region of a substrate. A silicon oxide layer is formed on a sidewall of the split gate electrode structure and a surface of the substrate. A word line is formed on the silicon oxide layer that is positioned on the sidewall of the split gate electrode structure. The word line has an upper width and a lower width. The lower width is greater than the upper width. A logic gate pattern is formed on a logic region of the substrate. The logic gate pattern has a thickness thinner than the lower width of the word line.
摘要:
A method of fabricating a flash memory cell having a split gate structure. A sacrificial layer is formed on a floating gate layer formed on a semiconductor substrate. The sacrificial layer is etched to form an opening exposing a portion of the floating gate layer. A gate interlayer insulating layer pattern is formed inside the opening. After removing the sacrificial layer pattern and etching the floating gate layer (using the gate interlayer insulating layer pattern as an etch mask), a floating gate is formed under the gate interlayer insulating layer pattern. A control gate is formed overlapping a portion of the floating gate.
摘要:
A semiconductor device includes a substrate divided into a memory cell region and a logic region. A split gate electrode structure is formed in a memory cell region of a substrate. A silicon oxide layer is formed on a sidewall of the split gate electrode structure and a surface of the substrate. A word line is formed on the silicon oxide layer that is positioned on the sidewall of the split gate electrode structure. The word line has an upper width and a lower width. The lower width is greater than the upper width. A logic gate pattern is formed on a logic region of the substrate. The logic gate pattern has a thickness thinner than the lower width of the word line.
摘要:
A method of fabricating a flash memory cell having a split gate structure. A sacrificial layer is formed on a floating gate layer formed on a semiconductor substrate. The sacrificial layer is etched to form an opening exposing a portion of the floating gate layer. A gate interlayer insulating layer pattern is formed inside the opening. After removing the sacrificial layer pattern and etching the floating gate layer (using the gate interlayer insulating layer pattern as an etch mask), a floating gate is formed under the gate interlayer insulating layer pattern. A control gate is formed overlapping a portion of the floating gate.
摘要:
A semiconductor device includes a substrate divided into a memory cell region and a logic region. A split gate electrode structure is formed in a memory cell region of a substrate. A silicon oxide layer is formed on a sidewall of the split gate electrode structure and a surface of the substrate. A word line is formed on the silicon oxide layer that is positioned on the sidewall of the split gate electrode structure. The word line has an upper width and a lower width. The lower width is greater than the upper width. A logic gate pattern is formed on a logic region of the substrate. The logic gate pattern has a thickness thinner than the lower width of the word line.
摘要:
A semiconductor device includes a substrate divided into a memory cell region and a logic region. A split gate electrode structure is formed in a memory cell region of a substrate. A silicon oxide layer is formed on a sidewall of the split gate electrode structure and a surface of the substrate. A word line is formed on the silicon oxide layer that is positioned on the sidewall of the split gate electrode structure. The word line has an upper width and a lower width. The lower width is greater than the upper width. A logic gate pattern is formed on a logic region of the substrate. The logic gate pattern has a thickness thinner than the lower width of the word line.
摘要:
Example embodiments may provide a nonvolatile memory device. The example embodiment nonvolatile memory device may include a floating gate structure formed on a semiconductor substrate with a gate insulating layer between them and/or a control gate formed adjacent to the floating gate with a tunneling insulation layer between them. The floating gate may include a first floating gate formed on the gate insulating layer, a second floating gate formed on the first floating gate with a first insulating pattern between them, and/or a gate connecting layer formed on at least one sidewall of the first insulating pattern so that the gate conducting layer may electrically connect the first floating gate and the second floating gate. The second floating gate may have a tip formed at its longitudinal end that may not contact the gate connecting layer.
摘要:
Disclosed is a wireless sensor network with a linear structure capable of bidirectional communication. The wireless sensor network includes a plurality of nodes linearly connected from a sink node to a terminal node by connecting each node to a single upper-level node and a single lower-level node, each node has an active period for transmitting/receiving data to/from its upper-level node and lower-level node, the active period includes a downstream duration for transmitting data/commands from the sink node to the terminal node and an upstream duration for transmitting data/commands from the terminal node to the sink node, and each of the upstream and downstream durations sequentially includes RX, TX, and ACK intervals, so that bidirectional communication between the sink node and the terminal node can be performed within a single active period.