摘要:
A method of operating a thermal inkjet printer having a thermal inkjet printhead that includes the steps of selecting an ink drop volume, selecting a pulse width that will cause the thermal inkjet printhead to deposit an ink drop having the selected drop volume, and operating the thermal inkjet printhead with the selected pulse width and at an operating energy that is greater than a turn-on energy of the printhead for the selected pulse width.
摘要:
An ink-jet swath printer employing a cartridge with a spring bag primary reservoir and an auxiliary ink reservoir interconnected via a tube to form a closed ink replenishment system. The primary reservoir creates a negative pressure which draws ink from the auxiliary reservoir as ink is expelled from the cartridge printhead during printing operations. The auxiliary reservoir can either be mounted on the cartridge carriage or on the printer body. The auxiliary reservoir is a large capacity collapsible bag mounted below the level of the printhead to establish an ink pressure head at the primary reservoir connection which is not so large as to destroy or diminish the negative pressure and allow ink to drool from the printhead, yet is sufficient to permit replenishment of the primary reservoir to avoid printhead ink starvation.
摘要:
A method of one embodiment of the invention is disclosed that determines the temperature and/or firing resistance of a thermal fluid-ejection nozzle as the fluid-ejection nozzle is fired. The method determines whether the fluid-ejection nozzle ejected fluid upon firing based on the temperature and/or firing resistance of the fluid-ejection nozzle.
摘要:
Disclosed is an inkjet print cartridge having an ink reservoir; a substrate having a plurality of individual ink firing chambers with an ink firing element in each chamber along a top surface of the substrate and having a first outer edge along a periphery of substrate; the first outer edge being in close proximity to the ink firing chambers. The ink firing chambers are arranged in a first chamber array and a second chamber array and with the firing chambers spaced so as to provide 600 dots per inch printing. An ink channel connects the reservoir with the ink firing chambers, the channel including a primary channel connected at a first end with the reservoir and at a second end to a secondary channel; the primary channel allowing ink to flow from the ink reservoir, around the first outer edge of the substrate to the secondary channel along the top surface of the substrate so as to be proximate to the ink firing chambers. A separate inlet passage for each firing chamber connecting the secondary channel with the firing chamber for allowing high frequency refill of the firing chamber. A group of the firing chambers in adjacent relationship forming a primitive in which only one firing chamber in the primitive is activated at a time. First circuit member on the substrate connects to the firing elements and a second circuit member on the cartridge connects to the first circuit member, for transmitting firing signals to the ink firing elements at a frequency greater than 9 kHz.
摘要:
A closed ink replenishment system for replenishing the supply of ink in negative pressure spring-bag reservoirs in a printer/plotter. A tube runs between each cartridge reservoir and an auxiliary reservoir mounted to the printer/plotter frame to form the closed ink system. As ink is depleted from the spring-bag reservoir during printing operation, the negative pressure in the cartridge increases, drawing ink through the tube from the auxiliary reservoir into the cartridge until the negative pressure decreases to an equilibrium point. As a result, the volume of ink within the spring-bag reservoir remains substantially constant so long as there is ink remaining within the auxiliary reservoir. This maintains the print quality. The auxiliary reservoir is a flat bag mounted on a spring-biased platform, which acts as a height regulating system. As ink is depleted from the auxiliary bag, the height of the platform and bag increases to maintain a constant pressure and elevation head at the spring-bag reservoir.
摘要:
A fastening tool inserts a self-penetrating fastener into workpieces and then sets the fastener in a manner similar to a blind riveting tool. The fastener has a stem, a mandrel connected to the stem, and a body surrounding a portion of the stem adjacent the mandrel. The body has an enlarged head at the end opposite the mandrel. The mandrel has a point for penetrating the workpieces. The fastening tool applies a force to the fastener, causing it to penetrate the workpiece. The fastening tool then pulls the stem in a direction away from the workpiece while restraining the body against movement relative to the workpiece. The mandrel expands the lower portion of the body radially as it is pulled into contact with the body, forming a second or blind head on the side of the workpiece opposite the fastening tool.
摘要:
An inkjet print cartridge uses at least one groove to supply ink from an ink reservoir to the fluid channel, which includes an ink ejection chamber, such that foreign particles within the ink supply are filtered out by the grooves so as not to block the fluid channel. In one embodiment, a barrier layer between a substrate and nozzle member contains the ink ejection chamber which is in communication with a plenum via a flow restrictor, such as pinch points. The nozzle member includes an array of orifices and grooves. The substrate includes two linear arrays of ink ejection elements, such as heater elements, and each orifice in the nozzle member is associated with an ink ejection chamber and ink ejection element. A plurality of grooves is likewise associated with each plenum. The plurality of grooves in the nozzle member supply ink into each plenum, which in turn supplies ink to the ink ejection chamber.
摘要:
Disclosed is an ink delivery system for high throughput commercial inkjet printing devices. The ink delivery system includes a high speed ink ejection printhead with a large number of nozzles and an ink flow design which provides for improved printhead cooling. The printhead design achieves high ink ejection rates by having a very short inlet channel length which is made possible by having nozzles with a constant distance from the edge of the printhead. In order to accommodate this constant distance from the edge of the printhead the entire array of nozzles is disposed at a angle relative to the direction normal to the scan direction. An impinging ink flow against the back of the printhead is provided to limit the temperature of the printhead. A bubble collection chamber to increase the life of the printhead and a pressure regulator to provide ink at a controlled pressure to the printhead may also be provided. Pressurized ink may be provided so that ink pressure may be properly controlled even during peak usage.
摘要:
An inkjet drop ejection system comprises a combination of printhead components and ink, mutually tuned to maximize operating characteristics of the printhead and print quality and dry time of the ink. Use of a short shelf (distance from ink source to ink firing element), on the order of 55 microns, provides a very high speed refill. However, it is a characteristic of high speed refill that it has a tendency for being over-damped. To provide the requisite damping, the ink should have a viscosity greater than about 2 cp. In this way, the ink and architecture work together to provide a tuned system that enables stable operation at high frequencies. One advantage of the combination of a pigment and a dispersant in the ink is the resultant higher viscosity provided. The high speed would be of little value if the ink did not have a fast enough rate of drying. This is accomplished by the addition of alcohols or alcohol(s) and surfactant(s) to the ink. Fast dry times are achieved with a combination of alcohols, such as iso-propyl alcohol with a 4 or 5 carbon alcohol or with iso-propyl alcohol plus surfactant(s). One preferred embodiment of a short shelf (90 to 130 microns), ink viscosity of about 3 cp, and surface tension of about 54 provides a high speed drop generator capable of operating at about 12 KHz. Reducing the shelf length to about 55 microns, in combination with rotating the substrate at an angle to the scan direction, permits maximum drop generator operation as high as about 20 KHz. As a consequence of employing pigment-based inks, high optical densities are realized, along with excellent permanence (no fade and better waterfastness), and good stability. The combination of preferred ink and pen architecture provides good drop generator stability.