Abstract:
A compression locking variable length cross-link device having modular components, including rod and/or pedicle screw coupling elements each having a hole which may be disposed co-linearly with respect to other such holes in opposing elements such that a threaded hinge-post may be inserted therein. A nut is utilized to compress the elements together to rigidly secure the elements once they have been properly positioned relative to one another. In an additional set of embodiments, a linkage member having an elongate hole therein may be used to couple similar elements thereto in a similar flexible hinge-post manner such that the elements may be coupled to the linkage member instead of to the opposing elements directly.
Abstract:
The present invention is a polyaxial locking screw plate assembly for immobilization of vertebral bones, via fixation to surfaces thereof. The invention includes a plate, having an upper portion and a lower portion, each of which has a pair of holes having a threaded upper portion and a tapered lower portion. Coupling elements, including slideably joined socket and cap portions, are mounted about the semi-spherical heads of bone screws, which are screwed through the holes in the plate and into the bone. The heads of the screws are polyaxially mounted in the socket portions and as such may be inserted into the bone at a variety of angles. The socket portions of the coupling elements have slots in them which permit crush locking of the heads of the screws once the sockets seat and are forceably driven into the tapered portions of the corresponding holes. The cap portions are threaded so they may be advanced into the upper portions of the corresponding holes, thereby further locking the coupling elements into the holes, and applying an additional driving force against the corresponding socket portions to crush lock the screw heads at the selected angle relative to the plate.
Abstract:
A modular polyaxial pedicle screw and orthopaedic rod implant device including same includes a shaft portion, a cuff, a stem portion, and a rod coupling sub-assembly. The shaft portion is designed to be inserted into the pedicle, has a recess formed in its top, and includes a threading formed on the exterior surface around the recess. The stem portion is a threaded post having an enlarged ball formed at the base thereof, the ball being ideally suited to polyaxially rotate within the recess of the shaft. The cuff is a cylindrical element designed to seat around the interface of the ball portion of the stem and the recess of the shaft, initially so that the stem and shaft may polyaxially rotate relative to one another, and subsequently to hold the stem and shaft in final securement. The rod coupling sub-assembly consists of a rod coupling element which is mountable on the post portion of the stem, and a top locking nut which secures the rod coupling element to the post between the nut and the cuff. Spacer elements may be utilized which are positioned on the post between the cuff and the rod coupling element to permit axial variability on the stem in addition to the angular variability inherent in the shaft and stem interface.
Abstract:
A bone plate and system is provided. The bone fixation plate conforms to the contour of an irregularly shaped bone and eliminates the need for pre-bending or intraoperative bending of the plate. The bone plate is applied to the bone in a generally flat condition and the process of installing and tightening the bone screws in the prescribed order serves to contour the plate to the plate to the underlying bone while providing sufficient strength to effect bone healing. The geometry of the plate allows the plate to follow the contour of an irregularly shaped bone, preventing prominence and patient palpability and streamlining the surgical procedure.
Abstract:
An intervertebral space distraction and implantable device assembly provides sequentially axially wider spacers that are to be sequentially inserted into and removed from an intervertebral space to widen the space until a desired anatomical spacing of the adjacent vertebral bones is restored. The set of spacers includes a porous spacer that is as wide as the spacer that restores the desired anatomical spacing. The porous spacer can therefore be left implanted in the intervertebral space to promote fusion of the adjacent vertebral bones.
Abstract:
A distraction method including inserting a spacer element into a space between bones to be distracted, removing the spacer element from the space, inserting a wider spacer element into the space, and removing the wider spacer element from the space.
Abstract:
Strip fasteners and cranial plugs for use in reattaching a skull flap removed during brain surgery and methods of using the same. The strip fasteners are flexible and can be shaped to follow the perimeter contour of the skull flap. The cranial plugs can be used to reattach the skull flap or they can be installed after the skull flap is reattached using the strip fasteners. In some embodiments, the cranial plug(s) and strip fasteners can be installed at the same time. The strip fasteners and cranial plugs are designed to encourage bone growth and healing of the skull flap and they can be used to deliver medication and bone growth enhancement compositions to the surgical site.
Abstract:
Strip fasteners and cranial plugs for use in reattaching a skull flap removed during brain surgery and methods of using the same. The strip fasteners are flexible and can be shaped to follow the perimeter contour of the skull flap. The cranial plugs can be used to reattach the skull flap or they can be installed after the skull flap is reattached using the strip fasteners. In some embodiments, the cranial plug(s) and strip fasteners can be installed at the same time. The strip fasteners and cranial plugs are designed to encourage bone growth and healing of the skull flap and they can be used to deliver medication and bone growth enhancement compositions to the surgical site.
Abstract:
An instrument for holding an intervertebral spacer, the instrument comprising a shaft having a proximal end and a distal end, the proximal end forming a handle and the distal end forming a spacer engaging subassembly, the spacer engaging subassembly comprising at least one selectively expanding and contracting enclosure into which at least a portion of the spacer is introduced when the engaging subassembly is expanded and an actuating mechanism, extending from the proximal end to the distal end, by which the spacer member engaging subassembly may be selectively expanded and contracted.
Abstract:
The invention pertains to adjustable bone plates which comprise one or more sets of first members and second members. The first members and second members are releasably secured to each other by attachment means and locking means, and two or more set of first members and second members are connected by bridging means. The longitudinal and lateral dimensions of the bone plates may be adjustable.