Abstract:
The present invention provides a method for installing a hydroelectric turbine at a deployment site on the seabed which involves lowering the turbine and associated base onto the seabed from a vessel using a number of lines, and once on the seabed using these lines to tether the vessel to the base/turbine while telemetry from the base/turbine is analyzed.
Abstract:
A method of installing an off-shore tidal hydroelectric turbine generator is described. The method provides for a number of safety features, ensuring that all components are safe to handle during the installation operation, and also ensuring that the turbine will not start spinning during the installation operation.
Abstract:
In a hydroelectric turbine having a rotor disposed within a housing, the rotor having an annular outer rim received by a channel in the housing, the improvement comprising providing at least one debris release chute in said housing such that debris captured between the rotor and the housing is released through the debris release chute.
Abstract:
The present invention provides a hydroelectric turbine system comprising an array of turbines in series and a cabling system for use in connecting together adjacent turbines in the array, the cabling system being designed to allow the majority of the cabling connecting adjacent turbines to be laid substantially in line with the direction of tidal flow in order to reduce stress on the cabling system when the turbines are deployed on the seabed at sites of high tidal flow.
Abstract:
The present invention provides a hydroelectric turbine system comprising an array of turbines in series and a cabling system for use in connecting together adjacent turbines in the array, the cabling system being designed to allow the majority of the cabling connecting adjacent turbines to be laid substantially in line with the direction of tidal flow in order to reduce stress the cabling system when the turbines are deployed on the seabed at sites of high tidal flow.
Abstract:
The present invention provides a hydroelectric turbine support system, and in particular the combination of a base on which the turbine is supported on the seabed during use, and a vessel used to transport the turbine and base to a deployment site, and which are designed to allow, when the system is docked at a quayside or the like, the base to contact the seabed during periods of low tide and to support the vessel thereon during such periods, without damage to either the base or the vessel.
Abstract:
The present invention is concerned with a hydroelectric turbine which includes a stator and a shaftless rotor housed for rotation within the stator, the stator defining an opening or channel in which the rotor is retained and which channel is dimension to permit the rotor to undergo both axial rotation and displacement along the circumference of the opening, whereby during operation the rotor assumes substantially hypocycloidal motion relative to the stator.
Abstract:
A method of testing a hydroelectric turbine before the turbine is installed and secured on the seabed, in order to ensure that the turbine is operating as expected, the method involving securing the turbine to a vessel and displacing the vessel through water in order to effect rotation while monitoring one or more operating parameters of the turbine.
Abstract:
The present invention provides provided a hydroelectric turbine having a stator and a rotor, an array of magnets being fixed to rotor and a corresponding array of coils being fixed to the stator, the turbine further including means for cooling the coils during operation of the turbine, the cooling means preferably taking the form of one or more channels passing through the stator, in close proximity to the coils, in order to allow fluid flow through the channels to cool the coils.
Abstract:
There is described a method for controlling the output of a tidal hydroelectric turbine generator from a remote location, with the need for control circuitry to be housed local to the generator. The rotational speed of the turbine, and consequently the output power level of the generator, is controlled by varying the transmission line voltage of the submarine power cable connecting the off-shore turbine with an on-shore substation.