摘要:
A multilayer optical film comprising: (a) an optical stack comprising alternating layers of at least a first polymer and a second polymer; and (b) a holographic image.
摘要:
An optical film comprising a plurality of layers wherein the refractive index difference between the layers along at least one in-plane axis is greater than the refractive index difference between the layers along an out-of-plane axis. The film has an average reflectivity of at least 60% for a predetermined bandwidth of light incident at 60.degree. from normal to the plane of the film, said light being polarized in a plane defined by the at least one in-plane axis and the out-of-plane axis.
摘要:
Birefringent optical films have a Brewster angle (the angle at which reflectance of p-polarized light goes to zero) which is very large or is nonexistent. This allows for the construction of multilayer mirrors and polarizers whose reflectivity for p-polarized light decreases slowly with angle of incidence, are independent of angle of incidence, or increase with angle of incidence away from the normal. As a result, multilayer films having high reflectivity (for both planes of polarization for any incident direction in the case of mirrors, and for the selected direction in the case of polarizers) over a wide bandwidth, can be achieved.
摘要:
A multiple layer reflective polarizer 12 is described. This element is placed between and optical cavity 24 and an LCD module 16 to form an optical display. The reflective polarizer reflects some light into the optical cavity 24 where it is randomized and may ultimately emerge with the correct polarization to be transmitted out of the display.
摘要:
A multiple layer reflective polarizer 12 is described. This element is placed between and optical cavity 24 and an LCD module 16 to form an optical display. The reflective polarizer reflects some light into the optical cavity 24 where it is randomized and may ultimately emerge with the correct polarization to be transmitted out of the display.
摘要:
A method of forming a reflective polarizer comprising orienting a multilayer film formed from alternating layers of a first polymeric material and a second polymeric material in a first in-plane axis direction while allowing dimensional relaxation in an orthogonal second in-plane axis direction to produce specified differences in the refractive indices of the first and second polymeric materials in the first and second in-plane directions and in the thickness direction.
摘要:
A multilayer polymer film has an optical stack including a plurality of alternating polymer layers with skin layers having mechanical, optical, or chemical properties differing from those of the layers in the optical stack, wherein the refractive indices in the in-plane direction nx and ny, and the refractive index in the thickness direction nz for each layer are all selected to obtain optical effects such as reflection, transmission, and/or polarization.
摘要:
A reflective polarizer and a dichroic polarizer are combined to provide an improved optical polarizer. The dichroic and reflective polarizers are typically in close proximity to each other, and are preferably bonded together to eliminate the air gap between the polarizers. The combination of the two polarizers provides a high reflectivity of one polarization and high transmission for the perpendicular polarization from the reflective polarizer side of the combined polarizer, and high absorption and transmission for light of orthogonal polarization from the dichroic polarizer side. The combination also reduces iridescence as seen in transmission and when viewed in reflection from the dichroic polarizer side. The increased extinction ratio and low reflectivity of the optical polarizer allows use of a lower extinction ratio dichroic polarizer in applications requiring a given extinction ratio and high transmission.
摘要:
A multiple layer reflective polarizer 12 is described. This element is placed between and optical cavity 24 and an LCD module 16 to form an optical display. The reflective polarizer reflects some light into the optical cavity 24 where it is randomized and may ultimately emerge with the correct polarization to be transmitted out of the display.