Abstract:
An apparatus and method comprising a cathode structure which can be a cylindrical filament coiled in a helix or which can be constructed of a ribbon or other suitable shape. The cathode structure can be heated by passage of an electrical current, or by other means such as bombardment with energetic electrons. Selected portions of the surface of the cathode structure have an altered property with respect to the non-selected portions of the surface. In one embodiment, the altered property is a curvature. In another embodiment, the altered property is a work function. By altering the property of the selected portions of the surface, the electron beam intensity is increased, and the width is decreased.
Abstract:
An apparatus and method comprising a cathode structure which can be a cylindrical filament coiled in a helix or which can be constructed of a ribbon or other suitable shape. The cathode structure can be heated by passage of an electrical current, or by other means such as bombardment with energetic electrons. Selected portions of the surface of the cathode structure have an altered property with respect to the non-selected portions of the surface. In one embodiment, the altered property is a curvature. In another embodiment, the altered property is a work function. By altering the property of the selected portions of the surface, the electron beam intensity is increased, and the width is decreased.
Abstract:
An apparatus and method comprising a cathode structure which can be a cylindrical filament coiled in a helix or which can be constructed of a ribbon or other suitable shape. The cathode structure can be heated by passage of an electrical current, or by other means such as bombardment with energetic electrons. Selected portions of the surface of the cathode structure have an altered property with respect to the non-selected portions of the surface. In one embodiment, the altered property is a curvature. In another embodiment, the altered property is a work function. By altering the property of the selected portions of the surface, the electron beam intensity is increased, and the width is decreased.
Abstract:
An apparatus and method comprising a cathode structure which can be a cylindrical filament coiled in a helix or which can be constructed of a ribbon or other suitable shape. The cathode structure can be heated by passage of an electrical current, or by other means such as bombardment with energetic electrons. Selected portions of the surface of the cathode structure have an altered property with respect to the non-selected portions of the surface. In one embodiment, the altered property is a curvature. In another embodiment, the altered property is a work function. By altering the property of the selected portions of the surface, the electron beam intensity is increased, and the width is decreased.
Abstract:
An apparatus and method comprising a cathode structure which can be a cylindrical filament coiled in a helix or which can be constructed of a ribbon or other suitable shape. The cathode structure can be heated by passage of an electrical current, or by other means such as bombardment with energetic electrons. Selected portions of the surface of the cathode structure have an altered property with respect to the non-selected portions of the surface. In one embodiment, the altered property is a curvature. In another embodiment, the altered property is a work function. By altering the property of the selected portions of the surface, the electron beam intensity is increased, and the width is decreased.
Abstract:
A method and apparatus is provided for increasing sensitivity for near-real-time detection of very low concentrations of diffusely distributed trace vapors in a carrier medium. Before admitting the trace vapor bearing carrier medium into a near-real-time GC/MS trace vapor detection system, the concentration of the trace vapor in the carrier medium, air in this instance, is increased by passing it through a membrane gas separator. The gas separator preferentially passes a portion of the trace vapor and rejects all but a very small portion of the carrier medium. The sample, highly concentrated in trace vapor with respect to the carrier medium after passing through the gas separator, is then compressed by a turbomolecular pump resulting in a substantial increase in density of the trace vapor at the exhaust port of the pump and a corresponding increase in detection sensitivity.
Abstract:
A gas flow distribution system accumulates a sample from a sample bearing carrier gas in a micro-accumulator, delivers it using a carrier gas to a gas chromatography column, and supplies a carrier gas to the gas chromatography column to facilitate separation of the sample into sample components and transport the sample components to a mass spectrometer for trace vapor detection and analysis or testing in real time. The system is made of inert components and configured to have low dead volume for improved performance and accuracy of detection. External valves are employed for easy management and balance of the flow in the system to minimize operation time and facilitate continuous accumulation, delivery, and testing of the sample. The delivery of the sample to the gas chromatography column using an electrically heated cold trap as the micro-accumulator can be performed extremely fast. By further combining the sample accumulation phase and the sample testing phase, real time operation of trace vapor detection is achieved. Because the step of delivering the sample to the gas chromatography column is performed quickly, the accumulation of the sample can resume quickly and is nearly continuous for improved efficiency.
Abstract:
A gas flow distribution system accumulates a sample from a sample bearing carrier gas in a micro-accumulator, delivers it using a carrier gas to a gas chromatography column, and supplies a carrier gas to the gas chromatography column to facilitate separation of the sample into sample components and transport the sample components to a mass spectrometer for trace vapor detection and analysis or testing in real time. The system is made of inert components and configured to have low dead volume for improved performance and accuracy of detection. External valves are employed for easy management and balance of the flow in the system to minimize operation time and facilitate continuous accumulation, delivery, and testing of the sample. The delivery of the sample to the gas chromatography column using an electrically heated cold trap as the micro-accumulator can be performed extremely fast. By further combining the sample accumulation phase and the sample testing phase, real time operation of trace vapor detection is achieved. Because the step of delivering the sample to the gas chromatography column is performed quickly, the accumulation of the sample can resume quickly and is nearly continuous for improved efficiency.
Abstract:
An X-ray tube rotating anode is cooled with a liquid metal functioning as a recirculated heat exchange fluid and/or a metal film in a gap between the anode and a stationary structure. The liquid metal is confined to the gap by (a) a labyrinth having a coating that is not wetted by the liquid, (b) a magnetic structure, or (c) a wick. The liquid metal recirculated through the anode is cooled in a heat exchanger located either outside the tube or in the tube so it is surrounded by the anode. The heat exchanger in the tube includes a mass of metal in thermal contact with the recirculating liquid metal and including numerous passages for a cooling fluid, e.g. water. A high thermal conductivity path is provided between an anode region bombarded by electrons and a central region of the tube where heat is extracted. In one embodiment the high thermal conductivity is achieved by stacked pyrolytic structures having crystalline axes arranged so there is high heat conductivity radially of the region and lower thermal heat conductivity normal to the high heat conductivity direction.
Abstract:
A spark sampling microparticle generator device and method providing means to first ionize a gap and then to switch a stabilized and controllable current into and out of said ionized gap to provide extremely high, selectable current density in a sample material in said gap with very fast rise and fall times to ablate said material to form microparticles. A plurality of identical modular circuits containing high frequency power transistors are selectably switchably connected in parallel simultaneously to the gap to achieve current densities which are higher than achievable with a single transistor, thereby obtaining the benefits of the high frequency response without being limited by the current limitations of the available transistors.