摘要:
An arrangement within a plasma reactor for detecting a plasma unconfinement event is provided. The arrangement includes a sensor, which is a capacitive-based sensor implemented within the plasma reactor. The sensor is implemented outside of a plasma confinement region and is configured to produce a transient current when the sensor is exposed to plasma associated with the plasma unconfinement event. The sensor has at least one electrically insulative layer oriented toward the plasma associated with the plasma unconfined event. The arrangement also includes a detection circuit, which is electrically connected to the sensor for converting the transient current into a transient voltage signal and for processing the transient voltage signal to ascertain whether the plasma unconfinement event exists.
摘要:
An arrangement within a plasma reactor for detecting a plasma unconfinement event is provided. The arrangement includes a sensor, which is a capacitive-based sensor implemented within the plasma reactor. The sensor is implemented outside of a plasma confinement region and is configured to produce a transient current when the sensor is exposed to plasma associated with the plasma unconfinement event. The sensor has at least one electrically insulative layer oriented toward the plasma associated with the plasma unconfined event. The arrangement also includes a detection circuit, which is electrically connected to the sensor for converting the transient current into a transient voltage signal and for processing the transient voltage signal to ascertain whether the plasma unconfinement event exists.
摘要:
A method for characterizing deposited film on a substrate within a processing chamber during processing is provided. The method includes determining voltage-current characteristic for a probe head when measuring capacitor is set at a first capacitance value. The method also includes applying RF train to the probe head when measuring capacitor is set at a capacitance value greater than first capacitance value. The method further includes providing an initial resistance value and an initial capacitance value for the deposited film. The method yet also includes employing initial resistance value, initial capacitance value, and voltage-current characteristic to generate simulated voltage-time curve. The method yet further includes determining measured voltage-time curve, which represents potential drop across the deposited film for one RF train. The method more over includes comparing the two curves. If the difference is less than predefined threshold, employ initial resistance value and initial capacitance for characterizing the deposited film.
摘要:
A method for characterizing deposited film on a substrate within a processing chamber during processing is provided. The method includes determining voltage-current characteristic for a probe head when measuring capacitor is set at a first capacitance value. The method also includes applying RF train to the probe head when measuring capacitor is set at a capacitance value greater than first capacitance value. The method further includes providing an initial resistance value and an initial capacitance value for the deposited film. The method yet also includes employing initial resistance value, initial capacitance value, and voltage-current characteristic to generate simulated voltage-time curve. The method yet further includes determining measured voltage-time curve, which represents potential drop across the deposited film for one RF train. The method more over includes comparing the two curves. If the difference is less than predefined threshold, employ initial resistance value and initial capacitance for characterizing the deposited film.
摘要:
A method is provided for exciting at least one electrode of a capacitively coupled reactive plasma reactor containing a substrate. The electrode is excited by applying a RF voltage with a trapezoidal waveform comprising a ramp-up, a high plateau, a ramp-down and a low plateau. The plasma density can be controlled by adjusting the duration of the ramp-up, the duration of the ramp-down, the amplitude and the repetition rate of the trapezoidal waveform. The ion energy distribution function at the substrate can be controlled by adjusting the amplitude and the relative duration between the high plateau and the low plateau of the trapezoidal waveform.
摘要:
A processing system having a chamber for in-situ optical interrogation of plasma emission to quantitatively measure normalized optical emission spectra is provided. The processing chamber includes a confinement ring assembly, a flash lamp, and a set of quartz windows. The processing chamber also includes a plurality of collimated optical assemblies, the plurality of collimated optical assemblies are optically coupled to the set of quartz windows. The processing chamber also includes a plurality of fiber optic bundles. The processing chamber also includes a multi-channel spectrometer, the multi-channel spectrometer is configured with at least a signal channel and a reference channel, the signal channel is optically coupled to at least the flash lamp, the set of quartz windows, the set of collimated optical assemblies, the illuminated fiber optic bundle, and the collection fiber optic bundle to measure a first signal.
摘要:
An arrangement for detecting plasma instability within a processing chamber of a plasma processing system during substrate processing is provided. The arrangement includes a probe arrangement, wherein the probe arrangement is disposed on a surface of the processing chamber and is configured to measure at least one plasma processing parameter. The probe arrangement includes a plasma-facing sensor and a measuring capacitor, wherein the plasma-facing sensor is coupled to a first plate of the measuring capacitor. The arrangement also includes a detection arrangement, which is coupled to a second plate of the measuring capacitor. The detection arrangement is configured to convert an induced current flowing through the measuring capacitor into a set of digital signals, the set of digital signals being processed to detect the plasma instability.
摘要:
A method for identifying a stabilized plasma within a processing chamber of a plasma processing system is provided. The method includes executing a strike step within the processing chamber to generate a plasma. The strike step includes applying a substantially high gas pressure within the processing chamber and maintaining a low radio frequency (RF) power within the processing chamber. The method also includes employing a probe head to collect a set of characteristic parameter measurements during the strike step, the probe head being on a surface of the processing chamber, wherein the surface is within close proximity to a substrate surface. The method further includes comparing the set of characteristic parameter measurements against a pre-defined range. If the set of characteristic parameter measurements is within the pre-defined range, the stabilized plasma exists.
摘要:
An arrangement for in-situ optical interrogation of plasma emission to quantitatively measure normalized optical emission spectra in a plasma chamber is provided. The arrangement includes a flash lamp and a set of quartz windows. The arrangement also includes a plurality of collimated optical assemblies, which is optically coupled to the set of quartz windows. The arrangement further includes a plurality of fiber optic bundles, which comprises at least an illumination fiber optic bundle, a collection fiber optic bundle, and a reference fiber optic bundle. The arrangement more over includes a multi-channel spectrometer, which is configured with at least a signal channel and a reference channel. The signal channel is optically coupled to at least the flash lamp, the set of quartz windows, the set of collimated optical assemblies, the illuminated fiber optic bundle, and the collection fiber optic bundle to measure a first signal.
摘要:
An arrangement for in-situ optical interrogation of plasma emission to quantitatively measure normalized optical emission spectra in a plasma chamber is provided. The arrangement includes a flash lamp and a set of quartz windows. The arrangement also includes a plurality of collimated optical assemblies, which is optically coupled to the set of quartz windows. The arrangement further includes a plurality of fiber optic bundles, which comprises at least an illumination fiber optic bundle, a collection fiber optic bundle, and a reference fiber optic bundle. The arrangement more over includes a multi-channel spectrometer, which is configured with at least a signal channel and a reference channel. The signal channel is optically coupled to at least the flash lamp, the set of quartz windows, the set of collimated optical assemblies, the illuminated fiber optic bundle, and the collection fiber optic bundle to measure a first signal.