摘要:
An illumination optics for EUV microlithography guides an illumination light bundle from a radiation source to an object field with an extension ratio between a longer field dimension and a shorter field dimension, where the ratio is considerably greater than 1. A field facet mirror has a plurality of field facets that set defined illumination conditions in the object field. A following optics downstream of the field facet mirror transmits the illumination light into the object field. The following optics includes a pupil facet mirror with a plurality of pupil facets. The field facets are in each case individually allocated to the pupil facets so that portions of the illumination light bundle impinging upon in each case one of the field facets are guided on to the object field via the associated pupil facet. The field facet mirror not only includes a plurality of basic illumination field facets which provide a basic illumination of the object field via associated basic illumination pupil facets, but also includes a plurality of correction illumination field facets which provide for a correction of the illumination of the object field via associated correction illumination pupil facets. The result is an illumination optics which allows unwanted variations of illumination parameters, for instance an illumination intensity distribution or an illumination angle distribution, to be corrected across the object field.
摘要:
A projection exposure apparatus for microlithography is disclosed. The apparatus can include a radiation source to generate illumination radiation and a reticle holder to receive a reticle in an object plane. The apparatus can further include illumination optics to guide the illumination radiation to an object field, which is to be illuminated, in the object plane. The apparatus can also include a wafer holder to receive a wafer in an image plane and projection optics to image the object field into an image field in the image plane. The radiation source and projection optics can be arranged in separate chambers (e.g., one above the other). The chambers can be separated by a wall. There can be an illumination radiation leadthrough in the wall. In some embodiments, the projection exposure apparatus can guide the illumination radiation with low loss.
摘要:
A component for setting a scan-integrated illumination energy in an object plane of a microlithography projection exposure apparatus is disclosed. The component includes a plurality of diaphragms which are arranged alongside one another with respect to a direction perpendicular to the scan movement and which differ in their form and the position of which can be altered approximately in the scan direction so that a portion of the illumination energy can be vignetted by at least one diaphragm. The form of the individual diaphragm is specifically adapted to the form of the illumination in a diaphragm plane in which the component is arranged. This has the effect that at least parts of the delimiting edges of two diaphragms always differ in the case of an arbitrary displacement of the diaphragms.
摘要:
An illumination optics for EUV microlithography illuminates an object field with the aid of an EUV used radiation beam. Preset devices preset illumination parameters. An illumination correction device corrects the intensity distribution and/or the angular distribution of the object field illumination. The latter has an optical component to which the used radiation beam is at least partially applied upstream of the object field and which can be driven in a controlled manner. A detector acquires one of the illumination parameters. An evaluation device evaluates the detector data and converts the latter into control signals. At least one actuator displaces the optical component. During exposures, the actuators are controlled with the aid of the detector signals during the period of a projection exposure. A maximum displacement of below 8 μm is ensured for edges of the object field towards an object to be exposed. The result is an illumination optics that is used to ensure conformance with preset illumination parameters even given the most stringent demands upon precision.
摘要:
A projection exposure apparatus for microlithography has an illumination system with an EUV light source and an illumination optical unit to expose an object field in an object plane. A projection optical unit images the object field into an image field in an image plane. A pupil facet mirror in a plane of the illumination optical unit that coincides with a pupil plane of the projection optical unit or that is optically conjugate with respect thereto has a plurality of individual facets on which illumination light can impinge. A correction diaphragm is in or adjacent to a pupil plane of the projection optical unit or in a conjugate plane with respect thereto. The correction diaphragm screens the illumination of the entrance pupil of the projection optical unit so that at least some source images assigned to the individual facets of the pupil facet mirror in the entrance pupil of the projection optical unit are partly shaded by one and the same diaphragm edge. The form of the diaphragm edge is predefined for the partial shading of the source images assigned to the pupil facets in the entrance pupil of the projection optical unit for the correction of the telecentricity and the ellipticity of the illumination.
摘要:
Illumination optics for EUV microlithography guide an illumination light bundle from a radiation source to an object field with an extension ratio between a longer field dimension and a shorter field dimension, where the ratio is considerably greater than 1.
摘要:
In general, in one aspect, the invention features a system that includes an illumination system of a microlithography tool, the illumination system including a first component having a plurality of elements. During operation of the system, the elements direct radiation from a source along an optical path to an arc-shaped object field at an object plane of a projection objective, and at least one of the elements has a curved shape that is different from the arc-shape of the object field.
摘要:
The disclosure provides an illumination optical system for microlithography that is designed so that, even with a change of illumination setting (e.g., a change in the given illumination conditions in the object field), variation of illumination parameters over the object field is confined within predetermined tolerances.
摘要:
A component for setting a scan-integrated illumination energy in an object plane of a microlithography projection exposure apparatus is disclosed. The component includes a plurality of diaphragms which are arranged alongside one another with respect to a direction perpendicular to the scan movement and which differ in their form and the position of which can be altered approximately in the scan direction so that a portion of the illumination energy can be vignetted by at least one diaphragm. The form of the individual diaphragm is specifically adapted to the form of the illumination in a diaphragm plane in which the component is arranged. This has the effect that at least parts of the delimiting edges of two diaphragms always differ in the case of an arbitrary displacement of the diaphragms.
摘要:
An illumination optics for microlithography includes an optical assembly for guiding illumination light to an object field to be illuminated in an object plane. The illumination optics can divide an illumination light radiation bundle into a plurality of radiation sub-bundles which are assigned to different illumination angles of the object field illumination. The illumination optics is configured so that at least some of the radiation sub-bundles are superimposed in a superposition plane which is spaced from the object plane and which is not imaged into the object plane in which superposition takes place. This superposition is such that edges of the superimposed radiation sub-bundles coincide at least partially. In some embodiments, a field intensity setting device includes a plurality of adjacent individual diaphragms which at least attenuate illumination light when exposed thereon. These individual diaphragms are insertable into an illumination light radiation bundle in a direction parallel to an object displacement direction. All individual diaphragms of the field intensity setting device are insertable into the illumination light radiation bundle from one and the same side.