摘要:
A semiconductor memory apparatus according to the embodiment includes a test mode controller, a first data alignment unit, a decoder, a test executing unit and a second data alignment unit. The test mode controller is configured to generate test enable signals in response to a test mode setting signal and a read command. The first data alignment unit is configured to parallely align first input data that are input in series, generate first alignment data, and transmit it to the first data driver. The decoder is configured to decode the first alignment data in response to the test enable signal and generate the decoding signal. The test executing unit is configured to execute the preset test mode in response to the decoding signal. The second data alignment unit is configured to parallely align second input data, which are input in series, in response to the test enable signal, generate second alignment data, and transmit it to a second data driver.
摘要:
A voltage stabilization circuit of a semiconductor memory apparatus includes an operation speed detecting unit configured to detect an operation speed of the semiconductor memory apparatus to generate a detection signal, and a voltage line controlling unit configured to interconnect a first voltage line and a second voltage line in response to the detection signal.
摘要:
A voltage stabilization circuit of a semiconductor memory apparatus includes an operation speed detecting unit configured to detect an operation speed of the semiconductor memory apparatus to generate a detection signal, and a voltage line controlling unit configured to interconnect a first voltage line and a second voltage line in response to the detection signal.
摘要:
A voltage stabilization circuit of a semiconductor memory apparatus includes an operation speed detecting unit configured to detect an operation speed of the semiconductor memory apparatus to generate a detection signal, and a voltage line controlling unit configured to interconnect a first voltage line and a second voltage line in response to the detection signal.
摘要:
An on-die termination apparatus guarantees a desirable spec margin by separately controlling pull-up transistors and pull-down transistors provided in a main on-die termination block. The on-die termination circuit includes an extended mode register set decoding unit for decoding an inputted address to output a plurality of decoding signals to set a termination impedance; an ODT control unit for selectively activating a plurality of pull-up control signals and a multiplicity of pull-down control signals by logically combining the plurality of decoding signals, pull-up test signals and pull-down test signals; and an ODT unit including a plurality of main termination units to test the termination impedance by separately activating the plurality of main termination units based on the plurality of pull-up control signals and the multiplicity of pull-down control signals.
摘要:
A semiconductor memory device is capable of adjusting effective data period of data. The semiconductor memory device includes a buffering unit for buffering input data, a window adjusting unit, and a transmitting unit. The window adjusting unit is for adjusting a window of the buffered data outputted from the buffering unit in response to plural metal option. The window adjusting unit includes a first driving unit for driving an output node in response to the output signal from the buffering unit and a second driving unit for additionally driving the output node in response to the output signal from the buffering unit. Meanwhile, the transmitting unit delivers output of the window adjusting unit into a core block.
摘要:
An on-die termination circuit with a stable effective termination resistance value and stabilized impedance mismatching. The on-die termination circuit includes: a decoding unit for decoding set values of an extended mode register set; an ODT output driver block including a plurality of output driver units connected in parallel with an output node for outputting an output signal and assigned with different resistance values; and a control signal generation block for generating a plurality of pull up and pull down control signals for turning on/off the plurality of output driver units in response to output signals of the decoding unit.
摘要:
There is provided a semiconductor memory device which is capable of reducing a current consumption in an active mode. The semiconductor memory device includes an internal voltage supply block and an internal voltage control block. The internal voltage supplying block is enabled in response to an internal voltage driving enable signal and generates an internal voltage used in an internal operation of the semiconductor memory device. The internal voltage control block activates the internal voltage driving enable signal during a predetermined period after the semiconductor memory device enters an active operation period and during a period corresponding to read/write operations.
摘要:
A filtering circuit includes jitter determination reference control unit configured to determine a jitter determination reference in correspondence to an operation mode and output a control signal in response to the jitter determination reference, and a filtering unit configured to set the jitter determination reference in response to the control signal and determine whether an input signal is maintained during a sample period in response to the set jitter determination reference.
摘要:
A circuit, including a first impedance unit having an impedance value based on a first impedance code and configured to drive a first node coupled with a resistor with a first voltage, a first code generation unit configured to generate the first impedance code so that an impedance value of the first impedance unit and an impedance value of the resistor are at a ratio of X:Y, dummy impedance units that receive the first impedance code and drive a second node with the first voltage, a second impedance unit having an impedance value based on a second impedance code and configured to drive the second node with a second voltage, and a second code generation unit configured to generate the second impedance code so that an overall impedance value of the dummy impedance units and an impedance value of the second impedance unit are at a ratio of X:Y.