摘要:
A process for the manufacture of resorcinol is described which relies upon the intermediacy of a .alpha.,.beta.-unsaturated ketone which can be reacted with a hydroxy moiety-containing compound to obtain a resorcinol precursor which is subsequently converted to resorcinol. In a specific embodiment, 2-cyclohexenone is reacted with water to obtain 3-hydroxycyclohexanone which is dehydrogenated to resorcinol. In another embodiment, 2-cyclohexenone is oxidized to cyclohexane-1,3-dione which is dehydragenated obtain resorcinol.
摘要:
A process for the manufacture of resorcinol is described which relies upon the intermediacy of a .alpha.,.beta.-unsaturated ketone which can be reacted with a hydroxy moiety-containing compound to obtain a resorcinol precursor which is subsequently converted to resorcinol. In a specific embodiment, 2-cyclohexenone is reacted dehydrogenated to resorcinol. In antoher embodiment, 2-cyclohexenone is oxidized to cyclohexane-1,3-dione which is dehydragenated obtain resorcinol.
摘要:
The selective isopropylation of a naphthyl compound to diisopropylnaphthalene enhanced in the 2,6-diisopropylnaphthalene isomer is obtained in the presence of an acidic crystalline molecular sieve catalyst having twelve membered oxygen rings. The catalyst pore aperture dimension range from 5.5 .ANG. to 7.0 .ANG.. The user of these shape selective catalysts results in a diisopropylnephthalene stream which is enhanced in .beta. isomers and enhanced in the desired 2,6-diisopropylnaphthalene isomer. A particularly preferred catalyst is synthetic Mordenite having a specific Si/Al ratio and NMR characteristics. Specific catalyst modifications are also described to improve selectivity to the desired 2,6-diisopropylnaphthalene isomer.
摘要:
The additional of redox-active metal components and ligands, alternatively or simultaneously, results in increased conversion and selectivity in the palladium-catalyzed oxidation of olefins to carbonyl products in the presence of polyoxoanions. In preferred modes, heteropolyoxoanions and Isopolyoxoanions containing tungsten, molybdenum and vanadium, individually or in combination, are described. The use of copper as the redox-active metal component shows reduced allylic reactivity. The elimination of chloride from the catalyst system provides substantial engineering advantages over the prior art, particularly, the reduction of corrosion and chloro-organic by-product formation. The use of redox-active metal components and/or ligands makes the palladium-polyoxoanion catalyst system industrially practicable.
摘要:
The addition of redox-active metal components and ligands, alternatively or simultaneously, results in increased conversion and selectivity in the palladium-catalyzed oxidation of olefins to carbonyl products in the presence of polyoxoanions. In preferred modes, heteropolyoxoanions and isopolyoxoanions containing tungsten, molybdenum and vanadium, individually or in combination, are described. The use of copper as the redox-active metal component shows reduced allylic reactivity. The elimination of chloride from the catalyst system provides substantial engineering advantages over the prior art, particularly, the reduction of corrosion and chloro-organic by-product formation. The use of redox-active metal components and/or ligands makes the palladium-polyoxoanion catalyst system industrially practicable.
摘要:
The addition of redox-active metal components and ligands, alternatively or simultaneously, results in increased conversion and selectivity in the palladium-catalyzed oxidation of olefins to carbonyl products in the presence of polyoxoanions. In preferred modes, heteropolyoxoanions and isopolyoxoanions containing tungsten, molybdenum and vanadium, individually or in combination, are described. The use of copper as the redox-active metal component shows reduced allylic reactivity. The elimination of chloride from the catalyst system provides substantial engineering advantages over the prior art, particularly, the reduction of corrosion and chloro-organic by-product formation. The use of redox-active metal components and/or ligands makes the palladium-polyoxoanion catalyst system industrially practicable.
摘要:
Methods for preparing integral synthesis gas conversion catalyst extrudates including an oxide of a Fischer-Tropsch (FT) metal component and a zeolite component are disclosed. The oxide of the FT metal component is precipitated from a solution into crystallites having a particle size between about 2 nm and about 30 nm. The oxide of the FT metal component is combined with a zeolite powder and a binder material, and the combination is extruded to form integral catalyst extrudates. The oxide of the FT metal component in the resulting catalyst is in the form of reduced crystallites located outside the zeolite channels. No appreciable ion exchange of FT metal occurs within the zeolite channels. The acid site density of the integral catalyst extrudate is at least about 80% of the zeolite acid site density.
摘要:
An oligomerization process in which hydrocarbon feedstocks are contacted with a hydrotreating catalyst in the absence of hydrogen and in the liquid phase. The catalyst is a heterogeneous catalyst selected from supported reduced metals, metals oxides, metal sulfides and combinations thereof. Preferred catalysts include mixed nickel and molybdenum oxides or mixed cobalt and molybdenum oxides. The process also oligomerizes sulfur compounds so that sulfur containing feedstocks can be treated without deactivating the catalysts.
摘要:
A process for preparing trisubstituted ureas is disclosed. A nitroarene is reacted with carbon monoxide and a secondary amine in the presence of a Group VIII transition metal catalyst and optionally one or more promoters selected from primary amines, halide ion-containing compounds, and chelating phosphorus and nitrogen compounds.
摘要:
The selective isopropylation of a naphthyl compound to diisopropylnaphthalene enhanced in the 2,6-diisopropylnaphthalene isomer is obtained in the presence of an acidic crystalline molecular sieve catalyst having twelve membered oxygen rings. The catalyst pore aperture dimension ranges from 5.5 .ANG. to 7.0 .ANG.. The use of these shape selective catalysts results in a diisopropylnaphthalene stream which is enhanced in .beta. isomers and enhanced in the desired 2,6-diisopropylnaphthalene isomer. A particularly preferred catalyst is synthetic Mordenite. Specific catalyst modifications are also described to improve selectivity to the desired 2,6-diisopropylnaphthalene isomer.