摘要:
The present invention relates to a method for manufacturing a transition metal-carbon nanotube hybrid material using nitrogen as a medium. The present invention is characterized in that nitrogen-added carbon nanotube is grown in the presence of metal catalyst particles by reacting an hydrocarbon gas with a nitrogen gas by a chemical vapor deposition (CVD) and a transition metal-carbon nanotube hybrid material where a transition metal is uniformly attached to the entire carbon nanotube structure in which nitrogen with a great chemical reactivity is added as heterogeneous elements is chemically manufactured. Therefore, the present invention does not use an acid treatment required to attach transition-metal atoms to the carbon-nanotube, a surface treating process using a surfactant and the like and an inhibitor for preventing the coagulation of the transition metal so that a simplification of the process is obtained and the method is an environment-friendly method. The transition metal-carbon nanotube hybrid material manufactured by the above can be applied variously as a hydrogen storage material, a catalyst material, an electric field emission device and an electrode material.
摘要:
The present invention relates to a method for manufacturing a transition metal-carbon nanotube hybrid material using nitrogen as a medium. The present invention is characterized in that nitrogen-added carbon nanotube is grown in the presence of metal catalyst particles by reacting an hydrocarbon gas with a nitrogen gas by a chemical vapor deposition (CVD) and a transition metal-carbon nanotube hybrid material where a transition metal is uniformly attached to the entire carbon nanotube structure in which nitrogen with a great chemical reactivity is added as heterogeneous elements is chemically manufactured. Therefore, the present invention does not use an acid treatment required to attach transition-metal atoms to the carbon-nanotube, a surface treating process using a surfactant and the like and an inhibitor for preventing the coagulation of the transition metal so that a simplification of the process is obtained and the method is an environment-friendly method. The transition metal-carbon nanotube hybrid material manufactured by the above can be applied variously as a hydrogen storage material, a catalyst material, an electric field emission device and an electrode material.
摘要:
Disclosed are carbon nitride (C1-xNx) nanotubes with nano-sized pores on their stems, their preparation method and control method of size and quantity of pores thereof.The present invention further has an object of providing the C1-xNx nanotube with pores having the size of not more than 1 nm over structure of the nanotube and a method for preparing the same.Another object of the present invention is to provide the control method of the size and quantity of pores with size of not more than 1 nm in the preparation of the C1-xNx nanotube with the pores over structure of the nanotube.The present invention can produce the C1-xNx nanotube with nano-sized pores by reacting hydrocarbon gas and nitrogen gas through plasma CVD in the presence of metal catalyst particles, wherein x ranges from 0.001 to 0.2.
摘要:
Disclosed are carbon nitride (C1-xNx) nanotubes with nano-sized pores on their stems, their preparation method and control method of size and quantity of pores thereof.The present invention further has an object of providing the C1-xNx nanotube with pores having the size of not more than 1 nm over structure of the nanotube and a method for preparing the same.Another object of the present invention is to provide the control method of the size and quantity of pores with size of not more than 1 nm in the preparation of the C1-xNx nanotube with the pores over structure of the nanotube.The present invention can produce the C1-xNx nanotube with nano-sized pores by reacting hydrocarbon gas and nitrogen gas through plasma CVD in the presence of metal catalyst particles, wherein x ranges from 0.001 to 0.2.
摘要:
Disclosed are carbon nitride (C1-xNx) nanotubes with nano-sized pores on their stems, their preparation method and control method of size and quantity of pores thereof.The present invention further has an object of providing the C1-xNx nanotube with pores having the size of not more than 1 nm over structure of the nanotube and a method for preparing the same.Another object of the present invention is to provide the control method of the size and quantity of pores with size of not more than 1 nm in the preparation of the C1-xNx nanotube with the pores over structure of the nanotube.The present invention can produce the C1-xNx nanotube with nano-sized pores by reacting hydrocarbon gas and nitrogen gas through plasma CVD in the presence of metal catalyst particles, wherein x ranges from 0.001 to 0.2.
摘要:
The present application provides a C1-xNx nanotube with pores having nano-sized diameter ranging from 5 to 10 Å, where x ranges from 0.001 to 0.2, and a method for controlling the size and quantity of pores in said nanotube by reacting hydrocarbon gas, nitrogen gas, and oxygen gas or hydrogen gas together in the presence of metal catalyst and by controlling the concentration of nitrogen gas.
摘要:
Disclosed are a nanocrater catalyst in metal nanoparticles with a nanocrater form of hole structure in center of the catalyst which is useful for manufacturing nano-sized materials and/or articles with desired structure and characteristics, a preparation method thereof including a plasma etching and chemical etching process (“PTCE process”), and nano-sized materials and/or articles manufactured by using the nanocrater catalyst in metal nanoparticles.
摘要:
Disclosed are a nanocrater catalyst in metal nanoparticles with a nanocrater form of hole structure in center of the catalyst which is useful for manufacturing nano-sized materials and/or articles with desired structure and characteristics, a preparation method thereof including a plasma etching and chemical etching process (“PTCE process”), and nano-sized materials and/or articles manufactured by using the nanocrater catalyst in metal nanoparticles.
摘要:
Disclosed is a method for patterning a nanomaterial using solution evaporation. More particularly, the method for patterning a nanomaterial using solution evaporation includes; coating the nanomaterial with a polymer material and uniformly dispersing the coated nanomaterial in a solvent to prepare a solution containing the nanomaterial, and pouring the nanomaterial-containing solution on a substrate, enabling the nanomaterial to be patterned after evaporation of the solvent.
摘要:
Disclosed is a method for patterning a nanomaterial using solution evaporation. More particularly, the method for patterning a nanomaterial using solution evaporation includes; coating the nanomaterial with a polymer material and uniformly dispersing the coated nanomaterial in a solvent to prepare a solution containing the nanomaterial, and pouring the nanomaterial-containing solution on a substrate, enabling the nanomaterial to be patterned after evaporation of the solvent.