Strain Producing D-allulose 3-epimerase and Application thereof

    公开(公告)号:US20230265411A1

    公开(公告)日:2023-08-24

    申请号:US18187984

    申请日:2023-03-22

    CPC classification number: C12N9/90 C12N15/75

    Abstract: The present disclosure discloses a strain producing D-allulose 3-epimerase and application thereof, and belongs to the technical field of bioengineering. The present disclosure provides a method for improving the expression of D-allulose 3-epimerase by screening promoters and optimizing RBS thereof. The recombinant Bacillus subtilis constructed using thevectors pP43NMK-hag and pP43NMK-hag-RBS4 provided by the present disclosure improves the enzyme activity of a target gene D-allulose 3-epimerase, and theenzyme activities in shake flasks upon transformation are 1.30 times and 1.69 times that of an original vector. The present disclosure further provides a non-antibiotic resistance vector and a non-antibiotic resistance recombinant B. subtilis strain. Using the non-antibiotic resistance strain B. subtilis 1A751-dal-/pP43NMK-hag-RBS4-dpe-dal provided by the present disclosure, the highest fermentation enzyme activity in a shake flask is 24.72 U/mL, and the enzyme activity in a fermenter is 714.8 U/mL.

    Self-reinforced Starch-based Multifunctional Materials and Processing Method thereof

    公开(公告)号:US20220073706A1

    公开(公告)日:2022-03-10

    申请号:US17524801

    申请日:2021-11-12

    Abstract: Disclosed is a processing method of a self-reinforced starch-based multifunctional material, and belongs to the technical field of starch deep processing. The processing method takes bulk starch as a base material, including the following steps: firstly reacting starch nanoparticles with an organic acid anhydride reagent and adding a bacteriostatic agent to prepare composite nanoparticles, then mixing the composite nanoparticles with the bulk starch, an etherifying agent, a crosslinking agent, a plasticizer and the like, and finally preparing a starch-based multifunctional material by dry extrusion modification combined with a starch-based nanoparticle assembly and reinforcement technology. The method of the disclosure is simple and convenient in step, mild and controllable in reaction, and continuous and green in production. The obtained product has good mechanical properties, high barrier properties and high antibacterial properties, can be applied to many fields such as food, textiles, daily chemicals and medicine, and has a broad market prospect.

    Alginate Lyase and Application thereof

    公开(公告)号:US20210403894A1

    公开(公告)日:2021-12-30

    申请号:US17463628

    申请日:2021-09-01

    Abstract: The disclosure discloses an alginate lyase and application thereof, and belongs to the technical field of biology. The alginate lyase provided by the disclosure has high degradation activity, and the enzyme activity reaches 65 U/mg; the alginate lyase is stable in nature, and the enzyme activity remains 98% or higher of the initial enzyme activity after storage at 4° C. for 18 months; and the alginate lyase has high product specificity. The disclosure uses E. coli as a host to express the alginate lyase derived from V. natriegens, the obtained recombinant E. coli can produce the alginate lyase secreted extracellularly in a conventional LB medium without adding an induction substrate sodium alginate, so the downstream processing technology of protein is simplified, and the disclosure has great industrial application potential.

    Arginine Deiminase Mutant with Improved Enzyme Activity and Temperature Stability and Application Thereof

    公开(公告)号:US20180251748A1

    公开(公告)日:2018-09-06

    申请号:US15907340

    申请日:2018-02-28

    Abstract: An arginine deiminase mutant with improved enzyme activity and temperature stability and application thereof were provided, belonging to the technical field of genetic engineering and enzyme engineering. The arginine deiminase mutant is proline, namely Gly292 Pro, mutated from glycine near an enzyme active center. A wild-type arginine deiminase arcA coding gene is molecularly modified by a site-directed mutation technique to obtain a mutant enzyme ADIG292P, which has glycine at position 292 of an amino acid sequence of the wild type arginine deiminase mutated to proline. The arginine deiminase, modified by site-directed mutation, of the present invention has 1.5 times of increase in enzyme activity and 5.43 times of increase in half-life period at 40° C. compared with the wild-type enzyme, which solves the problems of low catalytic ability and temperature stability during the catalytic synthesis of citrulline using arginine deiminase, and lays a foundation for industrial production of efficient synthesis of citrulline and medication application.

    Antibacterial Glucose-based Composite Nanoparticle and Processing Method and Use thereof

    公开(公告)号:US20220273004A1

    公开(公告)日:2022-09-01

    申请号:US17744811

    申请日:2022-05-16

    Abstract: The present disclosure discloses an antibacterial glucose-based composite nanoparticle and a processing method and use thereof, and belongs to the technical field of processing of modern food. According to the present disclosure, the antibacterial composite nanoparticle is prepared by using a particle surface positioning modification technology and a physical field charge transfer technology with a natural glucose-based nanoparticle as a raw material. The obtained antibacterial composite nanoparticle has a particle size of 50-1,000 nm, a surface zeta potential of 0 to −10 mV and a broad-spectrum antibacterial rate of greater than 98%. The shelf life of food can be effectively prolonged to prevent spoilage of products. The antibacterial composite nanoparticle can be used in food, textiles, daily chemicals, medicine and many other fields, and has a wide application prospect.

    Nutritional Cereal-based Food with Low Glycemic Load and Processing Method thereof

    公开(公告)号:US20210368809A1

    公开(公告)日:2021-12-02

    申请号:US17403932

    申请日:2021-08-17

    Abstract: The disclosure discloses a nutritional cereal-based food with low glycemic load and processing method thereof, and belongs to the technical field of processing of healthy foods. According to the disclosure, bulk grain crops are used as raw materials and mixed with a natural plant extract with the content of 3-deoxyanthocyanidin more than 3 mg/100 g and a sulfur-rich plant or animal protein, so that in-situ encapsulation of starch granules is achieved through an interaction of a sulfur-containing protein and 3-deoxyanthocyanidin, and a grain-source nutritional food for special dietary uses with low GI. According to the method of the disclosure, not only is the process environmentally friendly, operation procedures are simple, but also slow release of blood glucose after a meal is achieved by using the product, and the product can be used as a meal replacement food for people with abnormal glucose metabolism and the like.

Patent Agency Ranking