摘要:
Methods of depositing a magnetic material on a substrate, the methods including placing a substrate in an plating solution, the plating solution including an additive selected from malonic acid derivatives; β-diketones and β-diketone derivatives; and C6C3 compounds and C6C3 compound derivatives; and electrochemically depositing a magnetic material on the substrate by pulsing an electrical current connected to the substrate on and off.
摘要翻译:将磁性材料沉积在基材上的方法,包括将基材置于电镀溶液中的方法,所述电镀溶液包含选自丙二酸衍生物的添加剂; β-二酮和β-二酮衍生物; 和C 6 C 3化合物和C 6 C 3化合物衍生物; 并通过脉冲连接到基板上的电流来电离地将磁性材料沉积在基板上。
摘要:
A method is disclosed for defining discrete magnetic and non-magnetic regions on the magnetic film layer of a storage media substrate. The method applies anodic oxidation of a cobalt-containing magnetic film layer to remove cobalt, followed by controlled deposition of a non-magnetic matrix into the regions where the cobalt has been removed. Deposition may either be electrodeposition, collimated vacuum deposition, or other methods depending upon the composition of the non-magnetic matrix being deposited. The method may be performed in a single electrochemical cell.
摘要:
A magnetic device that includes a write pole having a write pole tip; a read pole having a read pole tip; an optical near field transducer; and a contact pad. The contact pad includes Ni100-aXa, wherein X is chosen from Ru, Re, Zr, Cr, and Cu; and a is the atomic percent of the element X, and can range from about 20 to about 90. The optical near field transducer is positioned between the read pole and the write pole and the contact pad is positioned adjacent the write pole opposite the optical near field transducer.
摘要:
A magnetic device that includes a write pole having a write pole tip; a read pole having a read pole tip; an optical near field transducer; and a contact pad. The contact pad includes Ni100-aXa, wherein X is chosen from Ru, Re, Zr, Cr, and Cu; and a is the atomic percent of the element X, and can range from about 20 to about 90. The optical near field transducer is positioned between the read pole and the write pole and the contact pad is positioned adjacent the write pole opposite the optical near field transducer.
摘要:
A magnetic device that includes a write pole having a write pole tip; a read pole having a read pole tip; an optical near field transducer; and a contact pad. The contact pad includes Ni100-aXa, wherein X is chosen from Ru, Re, Zr, Cr, and Cu; and a is the atomic percent of the element X, and can range from about 20 to about 90. The optical near field transducer is positioned between the read pole and the write pole and the contact pad is positioned adjacent the write pole opposite the optical near field transducer.
摘要:
An electrodeposited magnetic recording medium having multiple coercivity values is disclosed. In some embodiments, layers having different coercivity levels may be separated by exchange coupled composites and in other embodiments a range of coercivity levels are deposited in a gradient fashion. In some embodiments, the layers with multiple coercivity values comprise bit patterned media islands formed from a photoresist.
摘要:
A magnetic recording head has a magnetic pole tip and a seed layer upon which the magnetic pole tip is formed. The seed layer is preferably formed of a high magnetic moment material having a saturation magnetization of at least 1.8 Tesla and a high resistance to corrosion. In preferred embodiments of the present invention, the seed layer is preferably formed of 2.1 Tesla Fe44-46Co39-41Ni14.5-15, 1.8 Tesla Fe54-56Ni27-29Co16-18 Tesla Fe86-90Cr10-14, or 1.9 Tesla Fe52-62Co26-36Cr10-14, wherein the subscripts indicate a preferred range of atomic percentages for each element in the given alloy.
摘要:
A patterned magnetic recording media and method thereof is provided. A recording layer comprises a continuous surface of more-noble elements and less-noble elements, such as CoXYZ, wherein X can be Pt, Pd, Ru, Rh, Ir, Os, or Au, wherein Y can be null or Cr, and wherein Z can be null, Cu, Ta, Ti, O, B, Ag, or TiO2. The recording layer is masked, shielding areas for recording domains and exposing areas between the recording domains. A voltage bias establishes the substrate as an anode in the presence of Pt cathode, in an electrolyte bath. Ions of the less-noble element are anodically removed predominantly from the exposed areas of the recording layer for a controlled time. The controlled time minimizes oxidation of the nobler element and reduces undercutting of the recording domains. The article produced can have separating areas with surfaces substantially formed of the more-noble element.
摘要:
A patterned magnetic recording media and method thereof is provided. A recording layer comprises a continuous surface of more-noble elements and less-noble elements, such as CoXYZ, wherein X can be Pt, Pd, Ru, Rh, Ir, Os, or Au, wherein Y can be null or Cr, and wherein Z can be null, Cu, Ta, Ti, O, B, Ag, or TiO2. The recording layer is masked, shielding areas for recording domains and exposing areas between the recording domains. A voltage bias establishes the substrate as an anode in the presence of Pt cathode, in an electrolyte bath. Ions of the less-noble element are anodically removed predominantly from the exposed areas of the recording layer for a controlled time. The controlled time minimizes oxidation of the nobler element and reduces undercutting of the recording domains. The article produced can have separating areas with surfaces substantially formed of the more-noble element.
摘要:
A method is described for forming a magnetic recording head substrate. The method includes utilizing a metal feature on the magnetic recording head substrate as a grounding path. The magnetic recording head substrate is submerged in a solution containing ions of a second material, and the ions of the second material are electrodeposited on the magnetic recording head substrate.