摘要:
A method of fabricating a metal silicide layer includes forming a metal layer on a substrate, and forming a pre-metal silicide layer by reacting the substrate with the metal layer by performing a first annealing process on the substrate. The method also includes implanting silicon into the substrate using a gas cluster ion beam (GCIB) process, and changing the pre-metal silicide layer into a metal silicide layer by performing a second annealing process on the substrate.
摘要:
A method of fabricating a metal silicide layer includes forming a metal layer on a substrate, and forming a pre-metal silicide layer by reacting the substrate with the metal layer by performing a first annealing process on the substrate. The method also includes implanting silicon into the substrate using a gas cluster ion beam (GCIB) process, and changing the pre-metal silicide layer into a metal silicide layer by performing a second annealing process on the substrate.
摘要:
A method of fabricating a semiconductor includes providing a substrate having a first region and a second region defined therein, forming a first gate and a first source and drain region in the first region and forming a second gate and a second source and drain region in the second region, forming an epitaxial layer in the second source and drain region, forming a first metal silicide layer in the first source and drain region, forming an interlayer dielectric layer on the first region and the second region, forming a plurality of contact holes exposing the first metal silicide layer and the epitaxial layer while penetrating the interlayer dielectric layer, forming a second metal silicide layer in the exposed epitaxial layer, and forming a plurality of contacts contacting the first and second metal silicide layers by filling the plurality of contact holes.
摘要:
A method of fabricating a semiconductor includes providing a substrate having a first region and a second region defined therein, forming a first gate and a first source and drain region in the first region and forming a second gate and a second source and drain region in the second region, forming an epitaxial layer in the second source and drain region, forming a first metal silicide layer in the first source and drain region, forming an interlayer dielectric layer on the first region and the second region, forming a plurality of contact holes exposing the first metal silicide layer and the epitaxial layer while penetrating the interlayer dielectric layer, forming a second metal silicide layer in the exposed epitaxial layer, and forming a plurality of contacts contacting the first and second metal silicide layers by filling the plurality of contact holes.
摘要:
Methods of forming a semiconductor device having stacked structures include forming a first semiconductor structure on a substrate and forming a first interlayer insulating layer on the substrate. The first interlayer insulating layer has a substantially level upper face. A semiconductor layer is formed on the first interlayer insulating layer and a first gate insulation layer is formed on the semiconductor layer at a processing temperature selected to control damage to the first semiconductor structure. A second semiconductor structure is formed on the first gate insulation layer.
摘要:
In a semiconductor device and a method of manufacturing the semiconductor device, preliminary isolation regions having protruded upper portions are formed on a substrate to define an active region. After an insulation layer is formed on the active region, a first conductive layer is formed on the insulation layer. The protruded upper portions of the preliminary isolation regions are removed to form isolation regions on the substrate and to expose sidewalls of the first conductive layer, and compensation members are formed on edge portions of the insulation layer. The compensation members may complement the edge portions of the insulation layer that have thicknesses substantially thinner than that of a center portion of the insulation layer, and may prevent deterioration of the insulation layer. Furthermore, the first conductive layer having a width substantially greater than that of the active region may enhance a coupling ratio of the semiconductor device. Thus, the semiconductor device may have improved electrical characteristics and reliability.
摘要:
In a method of manufacturing a semiconductor device for use in such applications as a flash memory device, a field insulating pattern defines an opening that exposes an active region of a semiconductor substrate. The field insulating pattern includes a first portion protruding from the substrate and a second portion buried in the substrate. An oxide layer is formed on the active region by an oxidation process using a reactive plasma including an oxygen radical and a conductive layer is then formed on the oxide layer to sufficiently fill up the opening. The oxide layer is formed by an oxidation reaction of a surface portion of the active region with the oxygen radical having a relatively low activation energy, resulting in an improved thickness uniformity of the oxide layer. As a result, various performance characteristics of the semiconductor device when used in flash memory and similar applications are improved.
摘要:
In a method of forming a thin-film structure employed in a non-volatile semiconductor device, an oxide film is formed on a substrate. An upper nitride film is formed on the oxide film by nitrifying an upper portion of the oxide film through a plasma nitration process. A lower nitride film is formed between the substrate and the oxide film by nitrifying a lower portion of the oxide film through a thermal nitration process. A damage to the thin-film structure generated in the plasma nitration process may be at least partially cured in the thermal nitration process, and/or may be cured in a post-thermal treatment process.
摘要:
In a semiconductor device and a method of manufacturing the semiconductor device, preliminary isolation regions having protruded upper portions are formed on a substrate to define an active region. After an insulation layer is formed on the active region, a first conductive layer is formed on the insulation layer. The protruded upper portions of the preliminary isolation regions are removed to form isolation regions on the substrate and to expose sidewalls of the first conductive layer, and compensation members are formed on edge portions of the insulation layer. The compensation members may complement the edge portions of the insulation layer that have thicknesses substantially thinner than that of a center portion of the insulation layer, and may prevent deterioration of the insulation layer. Furthermore, the first conductive layer having a width substantially greater than that of the active region may enhance a coupling ratio of the semiconductor device. Thus, the semiconductor device may have improved electrical characteristics and reliability.
摘要:
In a method of forming a thin-film structure employed in a non-volatile semiconductor device, an oxide film is formed on a substrate. An upper nitride film is formed on the oxide film by nitrifying an upper portion of the oxide film through a plasma nitration process. A lower nitride film is formed between the substrate and the oxide film by nitrifying a lower portion of the oxide film through a thermal nitration process. A damage to the thin-film structure generated in the plasma nitration process may be at least partially cured in the thermal nitration process, and/or may be cured in a post-thermal treatment process.