Abstract:
A backlight unit includes a mold frame, a metal core printed circuit board (“MCPCB”) on which at least one light emitting diode (“LED”) is mounted, a reflector, a light guide plate, and an optical sheet. The mold frame includes an MCPCB fixing portion, the MCPCB is directly and removably disposed on the MCPCB fixing portion, and a lower surface of the MCPCB is exposed to the outside of the mold frame. On the MCPCB, a reflector, a light guide plate, and an optical sheet are placed in the order named. The light guide plate has a light entering surface facing the LED.
Abstract:
A light emitting diode (“LED”) backlight assembly. The LED backlight assembly has a bottom container which has a bottom plate and a side edge surrounding the bottom plate, a plurality of light emitting diode printed circuit boards (“LED-PCBs”) on the bottom plate, and a connector which is closely located to edge located LEDs. The connector of the LED-PCB is closely located to an LED driving board, which is disposed at a lateral space of a lateral part of the bottom container to limit a vertical thickness of the backlight light assembly.
Abstract:
A light emitting module includes a light emitting chip generating light, a case and a lead frame. The case includes a bottom plate and sidewalls connected to the bottom plate. The bottom plate and the sidewalls define a receiving space in which the light emitting chip is received. The light is emitted in a first direction through an opening portion opposite to the bottom plate. The lead frame includes an electrode portion disposed in the case, and electrically connected to the light emitting chip, a connecting portion extending from the electrode portion and disposed outside of the case, a mounted portion disposed adjacent to the connecting portion, and a buffering portion disposed between the connecting portion and the mounted portion. The buffering portion has a generally nonlinear shape protruding in a direction substantially perpendicular to the first direction.
Abstract:
A backlight assembly includes a receiving container, a plurality of light-emitting modules, a driving unit and a side mold. The receiving container includes a bottom plate and a side part formed on a peripheral edge portion of the bottom plate. Light-emitting modules of the plurality of light-emitting modules are disposed in the receiving container. The light-emitting modules include a light-emitting base board and a plurality of light-emitting diodes (“LEDs”) disposed on a first side of the light-emitting base board. The driving unit is disposed in the receiving container proximate to a lower portion of the peripheral edge portion of the bottom plate. The driving unit is electrically connected to the light-emitting modules to control an operation of the plurality of LEDs. The side mold is disposed on the lower portion of the peripheral edge portion of the bottom plate and covers the driving unit
Abstract:
A backlight assembly includes a light guide plate, a light source assembly disposed adjacent to at least one side of the light guide plate and supplies light to the light guide plate, a container receiving the light guide plate and the light source assembly and including a bottom portion and a first sidewall extended from edges of the bottom portion to form a receiving space, and a coupling member disposed inside the receiving space of the container, and overlapping an upper surface of the light source assembly. The light source assembly is disposed adjacent to the first sidewall, the bottom portion, the coupling member and the light guide plate. The insertion direction of the coupling member is substantially perpendicular to the bottom portion of the container.
Abstract:
A candle that can variously create a color and a scent that a user desires is provided.The candle includes: a container in which a upper portion is an opening portion; a candle body that is housed within the container and in which a wick is provided; and a decorative combustion material that is filled within the container while enclosing a periphery of the candle body to perform a function of a decoration portion when the candle body does not burn and that exhibits a visual effect and diffuses a scent while burning when the candle body burns.
Abstract:
An endoscope, an endoscope system having an endoscope, and an endoscope control method are disclosed. The endoscope includes: a main body and a buoyancy control device. The main body may be configured in the form of a capsule and include an image capturing unit for capturing image information. The buoyancy control device may control buoyancy by changing the volume of the main body. Images of various types of internal organs can be precisely captured.
Abstract:
A liquid crystal display according to the present invention includes a first substrate and a second substrate facing each other, a pixel electrode disposed on the first substrate and including a first sub-pixel electrode and a second sub-pixel electrode spaced apart from the first sub-pixel electrode by a gap, a common electrode disposed on the second substrate, a shielding member disposed on the first substrate or the second substrate and overlapping the gap between the first sub-pixel electrode and the second sub-pixel electrode, an alignment layer disposed on at least one of the pixel electrode and the common electrode, and a liquid crystal layer disposed between the first substrate and the second substrate.
Abstract:
A lamp socket that can reduce the thickness of both sides of a display device includes a socket main body having a contact hole formed therein, and a power-applying member coupled to the socket main body through the contact hole, and provided with a lamp connection terminal, an inverter connection terminal, and a terminal connection part connected with the lamp connection terminal in a bent form so as to connect the lamp connection terminal with the inverter connection terminal. Accordingly, the thickness of both sides of the display device including the lamp sockets is reduced, and the compatibility of the product is extended.
Abstract:
In a display panel including a plurality of pixels, each pixel includes a first thin film transistor, first and second liquid crystal capacitors, a coupling capacitor, and a discharge circuit. The first liquid crystal capacitor is connected to a data line through the first thin film transistor. The second liquid crystal capacitor is connected in parallel to the first liquid crystal capacitor through the coupling capacitor. The discharge circuit is connected between the coupling capacitor and the second liquid crystal capacitor, and it discharges charges stored in the second liquid crystal capacitor.