摘要:
Provided is a simplified method of manufacturing a semiconductor device having a stress creating layer. A first conductive first impurity region is formed on a semiconductor substrate on both sides of a first gate of a first area of the semiconductor substrate, and a second conductive second impurity region is formed on the semiconductor substrate on both sides of a second gate of a second area. First and second spacers are formed on sidewalls of the first and second gates, respectively. First and second semiconductor layers are formed in portions of the semiconductor substrate so as to contact the first and second impurity regions, respectively. The second semiconductor layer is removed. First and second barrier layers are formed in the first and second contact holes of the insulation layer, respectively.
摘要:
A method of manufacturing a semiconductor device may include forming a first interlayer insulation layer on a substrate including at least one gate structure formed thereon, the substrate having a plurality of source/drain regions formed on both sides of the at least one gate structure, forming at least one buried contact plug on at least one of the plurality of source/drain regions and in the first interlayer insulation layer, forming a second interlayer insulation layer on the first interlayer insulation layer and the at least one buried contact plug, exposing the at least one buried contact plug in the second interlayer insulation layer by forming at least one contact hole, implanting ions in the at least one contact hole in order to create an amorphous upper portion of the at least one buried contact plug, depositing a lower electrode layer on the second interlayer insulation layer and the at least one contact hole, and forming a metal silicide layer in the amorphous upper portion of the at least one buried contact plug.
摘要:
Provided is a simplified method of manufacturing a semiconductor device having a stress creating layer. A first conductive first impurity region is formed on a semiconductor substrate on both sides of a first gate of a first area of the semiconductor substrate, and a second conductive second impurity region is formed on the semiconductor substrate on both sides of a second gate of a second area. First and second spacers are formed on sidewalls of the first and second gates, respectively. First and second semiconductor layers are formed in portions of the semiconductor substrate so as to contact the first and second impurity regions, respectively. The second semiconductor layer is removed. First and second barrier layers are formed in the first and second contact holes of the insulation layer, respectively.
摘要:
A method of manufacturing a semiconductor device may include forming a first interlayer insulation layer on a substrate including at least one gate structure formed thereon, the substrate having a plurality of source/drain regions formed on both sides of the at least one gate structure, forming at least one buried contact plug on at least one of the plurality of source/drain regions and in the first interlayer insulation layer, forming a second interlayer insulation layer on the first interlayer insulation layer and the at least one buried contact plug, exposing the at least one buried contact plug in the second interlayer insulation layer by forming at least one contact hole, implanting ions in the at least one contact hole in order to create an amorphous upper portion of the at least one buried contact plug, depositing a lower electrode layer on the second interlayer insulation layer and the at least one contact hole, and forming a metal silicide layer in the amorphous upper portion of the at least one buried contact plug.
摘要:
Embodiments of the invention provide a semiconductor device and a fabrication method for a semiconductor device that includes the processes of forming multiple gates on a silicon substrate, forming a gate spacer having a positive slope at the gate spacer edge, depositing a polysilicon layer on the silicon substrate between the gates, etching a portion of the polysilicon layer to form an opening exposing a portion of the silicon substrate, and forming an inter-insulation layer to the exposed portion of the silicon substrate to fill the opening. Using an annealing process applied to a layer in the gate spacer, the etch selectivity can be selectively controlled and consequently, the degree of slope at the gate spacer edge is predetermined.
摘要:
Embodiments of the invention provide a semiconductor device and a fabrication method for a semiconductor device that includes the processes of forming multiple gates on a silicon substrate, forming a gate spacer having a positive slope at the gate spacer edge, depositing a polysilicon layer on the silicon substrate between the gates, etching a portion of the polysilicon layer to form an opening exposing a portion of the silicon substrate, and forming an inter-insulation layer to the exposed portion of the silicon substrate to fill the opening. Using an annealing process applied to a layer in the gate spacer, the etch selectivity can be selectively controlled and consequently, the degree of slope at the gate spacer edge is predetermined.
摘要:
Embodiments of the invention provide a semiconductor device and a fabrication method for a semiconductor device that includes the processes of forming multiple gates on a silicon substrate, forming a gate spacer having a positive slope at the gate spacer edge, depositing a polysilicon layer on the silicon substrate between the gates, etching a portion of the polysilicon layer to form an opening exposing a portion of the silicon substrate, and forming an inter-insulation layer to the exposed portion of the silicon substrate to fill the opening. Using an annealing process applied to a layer in the gate spacer, the etch selectivity can be selectively controlled and consequently, the degree of slope at the gate spacer edge is predetermined.
摘要:
A method of manufacturing a MOS transistor with a void-free gate electrode is provided. A gate oxide film may be formed on a semiconductor, and a poly silicon film for a gate electrode may be deposited on the gate oxide film. P-type impurities may be implanted into the poly silicon film, and a thickness of the poly silicon film may be removed by chemical mechanical polishing.
摘要:
In a semiconductor memory device with a high operating current and a method of manufacturing the same, a semiconductor substrate is formed in which a memory cell region and a peripheral circuit region including an N-channel metal oxide semiconductor (NMOS) region and a P-channel metal oxide semiconductor (PMOS) region are defined. A gate electrode with sidewall spacers is formed in each of the memory cell region and the peripheral circuit region. Source and drain regions are formed in the semiconductor substrate at sides of the gate electrode to form metal oxide semiconductor (MOS) transistors. A first etch stop layer is formed on the semiconductor substrate where the MOS transistors are formed. A second etch stop layer is selectively formed in the NMOS region of the peripheral circuit region.
摘要:
In a method of forming a dual polysilicon gate of a semiconductor device, a polysilicon layer is formed on a substrate divided into an NMOS region and a PMOS region. Then, a p-type impurity is implanted in the PMOS region. A thermal annealing process is performed that causes generation of a compound material at a top surface of the polysilicon layer in the PMOS region as a result of bonding between the p-type impurity and the polysilicon layer. A cleaning process is then performed. During the cleaning process, the compound material decreases an etch rate in the PMOS region, so that a height of the polysilicon layer in the NMOS region is reduced relative to that of the polysilicon layer in the PMOS region. Accordingly, an intended range of a threshold voltage can be obtained by blocking the p-type impurity in the PMOS region from penetrating into a gate insulation layer. Also, by maintaining an increased height of a gate transmission material in the cell region, a resistance increase is thereby prevented.