摘要:
Lithium sulfur batteries are described, especially ones that are flexible for wearing about an appendage of a wearer. Such batteries have a lithium metal anode, a sulfur cathode comprising sulfur, a conductive carbon, a lithium supertonic solid-state conductor, and a dendritic or hyperbranched polymer binder, an electrolyte layer between the lithium metal anode and the sulfur cathode, and a current collector positioned on the sulfur cathode opposite the electrolyte layer.
摘要:
Lithium sulfur batteries are described, especially ones that are flexible for wearing about an appendage of a wearer. Such batteries have a lithium metal anode, a sulfur cathode comprising sulfur, a conductive carbon, a lithium supertonic solid-state conductor, and a dendritic or hyperbranched polymer binder, an electrolyte layer between the lithium metal anode and the sulfur cathode, and a current collector positioned on the sulfur cathode opposite the electrolyte layer.
摘要:
A parallel capacitor varactor shunt switch device may include a shunt layer, a coplanar waveguide (CPW) layer, and a tunable thin film dielectric layer that is interposed between the shunt layer and the CPW layer. The tunable thin film dielectric layer electrically isolates the shunt layer from the CPW layer. The shunt layer includes a plurality of parallel shunt lines. The CPW layer includes a CPW signal transmission line with two CPW ground lines parallel to the CPW signal transmission line. A plurality of varactor areas equal in number to the plurality of parallel shunt lines are defined in the CPW signal transmission line, each varactor area corresponding to an overlap of the CPW signal transmission line with a respective shunt line and each respective parallel shunt line and its corresponding varactor area defines a capacitor.
摘要:
A coplanar waveguide (CPW) square-ring slot antenna for use in wireless communication systems is miniaturized and reconfigurable by the integration of ferroelectric (FE) BST (barium strontium titanate) thin film varactors therein. The slot antenna device includes a sapphire substrate, top and bottom metal layers, and a thin ferroelectric BST film layer, where the FE BST varactors are integrated at the back edge of the antenna on the top metal layer.
摘要:
A resonant sensor for detecting a specific environmental analyte is presented. The resonant sensor comprises a top conductive layer of two ground conductors and a center signal line, a bottom conductive layer of two ground lines shunted together by a shunt line and a sensing layer positioned between the top conductive layer and the bottom conductive layer. A capacitor is created by the overlap of the center signal line of the top conductive layer and the shunt line of the bottom conductive layer. Electrical properties of the sensing layer change in response to binding the specific environmental analyte with the sensing layer. The sensing layer can be an electro-optic polymer. Nanoparticles or carbon nanotubes can be dispersed within the sensing layer to bind with the specific environmental analyte. An integrated antenna can be incorporated into to sensor to receive radio frequencies for wireless, passive sensing.
摘要:
A ferroelectric varactor suitable for capacitive shunt switching is disclosed. High resistivity silicon with a SiO2 layer and a patterned metallic layer deposited on top is used as the substrate. A ferroelectric thin-film layer deposited on the substrate is used for the implementation of the varactor. A top metal electrode is deposited on the ferroelectric thin-film layer forming a CPW transmission line. By using the capacitance formed by the large area ground conductors in the top metal electrode and bottom metallic layer, a series connection of the ferroelectric varactor with the large capacitor defined by the ground conductors is created. The large capacitor acts as a short to ground, eliminating the need for vias. The concept of switching ON and OFF state is based on the dielectric tunability of the ferroelectric thin-films. At 0 V, the varactor has the highest capacitance value, resulting in the signal to be shunted to ground, thus isolating the output from the input. This results in the OFF state of the switch. By applying a small voltage to the center conductor of the CPW, the varactor's capacitance can be reduced allowing the signal to be transmitted through resulting in the ON state of the device. Such a varactor shunt switch eliminates majority of problems plaguing the RF MEMS shunt switches.
摘要:
A resonant sensor for detecting a specific environmental analyte is presented. The resonant sensor comprises a top conductive layer of two ground conductors and a center signal line, a bottom conductive layer of two ground lines shunted together by a shunt line and a sensing layer positioned between the top conductive layer and the bottom conductive layer. A capacitor is created by the overlap of the center signal line of the top conductive layer and the shunt line of the bottom conductive layer. Electrical properties of the sensing layer change in response to binding the specific environmental analyte with the sensing layer. The sensing layer can be an electro-optic polymer. Nanoparticles or carbon nanotubes can be dispersed within the sensing layer to bind with the specific environmental analyte. An integrated antenna can be incorporated into to sensor to receive radio frequencies for wireless, passive sensing.
摘要:
A ferroelectric varactor suitable for capacitive shunt switching is disclosed. High resistivity silicon with a SiO2 layer and a patterned metallic layer deposited on top is used as the substrate. A ferroelectric thin-film layer deposited on the substrate is used for the implementation of the varactor. A top metal electrode is deposited on the ferroelectric thin-film layer forming a CPW transmission line. By using the capacitance formed by the large area ground conductors in the top metal electrode and bottom metallic layer, a series connection of the ferroelectric varactor with the large capacitor defined by the ground conductors is created. The large capacitor acts as a short to ground, eliminating the need for vias. The varactor shunt switches can be used to create a bandpass filter and a tunable notch filter. The bandpass filter is implemented by cascading the switches, and the bandpass filter implemented through the use of a resonance circuit.
摘要:
A coplanar waveguide (CPW) square-ring slot antenna for use in wireless communication systems is miniaturized and reconfigurable by the integration of ferroelectric (FE) BST (barium strontium titanate) thin film varactors therein. The slot antenna device includes a sapphire substrate, top and bottom metal layers, and a thin ferroelectric BST film layer, where the FE BST varactors are integrated at the back edge of the antenna on the top metal layer.
摘要:
Varactor shunt switches based on a nonlinear dielectric tunability of BaxSr(1−x)TiO3 (BST) thin-film on a sapphire substrates are presented. Nanostructured BST thin-films with dielectric tunability as high as 4.3:1 can be obtained on sapphire substrates, with very low loss-tangents below 0.025 at zero-bias and 20 GHz. The large capacitance of the varactor at zero bias can shunt the input signal to ground isolating the output port, resulting in the OFF state. When applying a bias voltage of approximately 10 V (a dc electric field of ˜250 kV/cm), the varactor's capacitance can be reduced to a minimum, allowing maximum transmission to the output resulting in the ON state. The microwave switching performance of the varactor shunt switch can be compared with the RF MEMS switches for potential applications at microwave and millimeterwave frequencies. Other applications of such BST varactors include tunable filters, phase shifter circuits and impedance matching circuits