摘要:
During a manufacturing sequence for forming a sophisticated high-k metal gate structure, a cover layer, such as a silicon layer, may be deposited on a metal cap layer in an in situ process in order to enhance integrity of the metal cap layer. The cover layer may provide superior integrity during the further processing, for instance in view of performing wet chemical cleaning processes and the subsequent deposition of a silicon gate material.
摘要:
During a manufacturing sequence for forming a sophisticated high-k metal gate structure, a cover layer, such as a silicon layer, may be deposited on a metal cap layer in an in situ process in order to enhance integrity of the metal cap layer. The cover layer may provide superior integrity during the further processing, for instance in view of performing wet chemical cleaning processes and the subsequent deposition of a silicon gate material.
摘要:
In a replacement gate approach in sophisticated semiconductor devices, a tantalum nitride etch stop material may be efficiently removed on the basis of a wet chemical etch recipe using ammonium hydroxide. Consequently, a further work function adjusting material may be formed with superior uniformity, while the efficiency of the subsequent adjusting of the work function may also be increased. Thus, superior uniformity, i.e., less pronounced transistor variability, may be accomplished on the basis of a replacement gate approach in which the work function of the gate electrodes of P-channel transistors and N-channel transistors is adjusted after completing the basic transistor configuration.
摘要:
In a replacement gate approach in sophisticated semiconductor devices, a tantalum nitride etch stop material may be efficiently removed on the basis of a wet chemical etch recipe using ammonium hydroxide. Consequently, a further work function adjusting material may be formed with superior uniformity, while the efficiency of the subsequent adjusting of the work function may also be increased. Thus, superior uniformity, i.e., less pronounced transistor variability, may be accomplished on the basis of a replacement gate approach in which the work function of the gate electrodes of P-channel transistors and N-channel transistors is adjusted after completing the basic transistor configuration.
摘要:
In a replacement gate approach, one work function metal may be provided in an early manufacturing stage, i.e., upon depositing the gate layer stack, thereby reducing the number of deposition steps required in a later manufacturing stage. Consequently, the further work function metal and the electrode metal may be filled into the gate trenches on the basis of superior process conditions compared to conventional replacement gate approaches.
摘要:
In a replacement gate approach, one work function metal may be provided in an early manufacturing stage, i.e., upon depositing the gate layer stack, thereby reducing the number of deposition steps required in a later manufacturing stage. Consequently, the further work function metal and the electrode metal may be filled into the gate trenches on the basis of superior process conditions compared to conventional replacement gate approaches.
摘要:
In a replacement gate approach, a superior cross-sectional shape of the gate opening may be achieved by performing a material erosion process in an intermediate state of removing the placeholder material. Consequently, the remaining portion of the placeholder material may efficiently protect the underlying sensitive materials, such as a high-k dielectric material, when performing the corner rounding process sequence.
摘要:
During the formation of sophisticated gate electrode structures, a replacement gate approach may be applied in which plasma assisted etch processes may be avoided. To this end, one of the gate electrode structures may receive an intermediate etch stop liner, which may allow the replacement of the placeholder material and the adjustment of the work function in a later manufacturing stage. The intermediate etch stop liner may not negatively affect the gate patterning sequence.
摘要:
During the formation of sophisticated gate electrode structures, a replacement gate approach may be applied in which plasma assisted etch processes may be avoided. To this end, one of the gate electrode structures may receive an intermediate etch stop liner, which may allow the replacement of the placeholder material and the adjustment of the work function in a later manufacturing stage. The intermediate etch stop liner may not negatively affect the gate patterning sequence.
摘要:
In sophisticated semiconductor devices, high-k metal gate electrode structures may be formed in an early manufacturing stage with superior integrity of sensitive gate materials by providing an additional liner material after the selective deposition of a strain-inducing semiconductor material in selected active regions. Moreover, the dielectric cap materials of the gate electrode structures may be removed on the basis of a process flow that significantly reduces the degree of material erosion in isolation regions and active regions by avoiding the patterning and removal of any sacrificial oxide spacers.