摘要:
An internal combustion engine (10) is operated in dependence upon operating characteristic variables such as rpm (nmot) of a crankshaft (18), temperature (Tmot) of the internal combustion engine (10) and/or temperature of the intake air (Taev). In the method, a temperature (Taevk) of the inducted air in the combustion chamber (16) is, at least in approximation, obtained from a detected or modeled temperature (Taev) of the inducted air in a region remote from the combustion chamber. To simplify the programming, it is suggested that the determination of the temperature (Taevk) of the inducted air in the combustion chamber (16) takes place under the assumption that the inducted air has a modeled or detected initial temperature (Taev) and that the intake air comes into thermal contact with a typical component (22) during a contact time (tcontact) which is typical for a type of the internal combustion engine (10) and for an operating state of the internal combustion engine (10) and the typical component has a modeled or detected temperature (Tev).
摘要:
An internal combustion engine includes a combustion chamber, a crankshaft and inlet and outlet valves. The engine is operated with a method wherein a fresh air charge (rl) of the combustion chamber and the engine rpm (nmot) are considered when computing a pressure (ps) in a region lying upstream of the inlet valve. The computation is done by utilizing at least one of thermodynamic equations and flow equations at at least one discrete time point during a work cycle of the engine. Or, a pressure (ps) in the above region and the rpm (nmot) of the crankshaft are considered when computing the fresh air charge (rl) of the combustion chamber by utilizing one of thermodynamic equations and flow equations at at least one discrete time point during a work cycle of the engine.
摘要:
A method and a device are provided for operating an internal combustion engine which allow for an improved diagnosis of the valve mechanism of cylinders of the internal combustion engine. For this purpose, a variable characteristic of a suction performance of a cylinder of the internal combustion engine is ascertained. The variable characteristic of the suction performance is ascertained as a function of the mass flow flowing into an intake manifold of the internal combustion engine and of a change of the intake manifold pressure during an intake phase of the cylinder.
摘要:
A method and a device are provided for operating an internal combustion engine which allow for an improved diagnosis of the valve mechanism of cylinders of the internal combustion engine. For this purpose, a variable characteristic of a suction performance of a cylinder of the internal combustion engine is ascertained. The variable characteristic of the suction performance is ascertained as a function of the mass flow flowing into an intake manifold of the internal combustion engine and of a change of the intake manifold pressure during an intake phase of the cylinder.
摘要:
In a method and a device for operating an internal combustion engine, a first variable characterizing the air-mass flow to the internal combustion engine is determined, and a second variable characterizing the air-mass flow is determined. The second variable characterizing the air-mass flow is used to derive a third variable characterizing the air-mass flow, which is delayed in time with respect to the second variable characterizing the air-mass flow. A difference is formed between the second variable characterizing the air-mass flow and the third variable characterizing the air-mass flow. The first variable characterizing the air-mass flow is corrected by the difference.
摘要:
A method for operating an internal combustion engine, in which at least one first influence variable influences a state variable of the air in the intake manifold. The state variable of the air in the intake manifold is ascertained while taking into account a plurality of influence variables, which influence the state variable, while using a first physical relationship. The same state variable is ascertained while taking into account a plurality of influence variables, which influence the state variable of the air in the intake manifold while using a second physical relationship. A specific adjusting parameter, which represents a specific error in the influence variable, is linked to each influence variable. The adjusting parameters are learned and monitored in the operation of the internal combustion engine. A certain adjusting parameter is learned and monitored in an operating range of the internal combustion engine in which the other adjusting parameters have a lesser influence on the state variable than that certain adjusting parameter, and in this context, the certain adjusting parameter is adjusted in such a way that the state variable ascertained by using the first physical relationship is at least approximately equal to the state variable ascertained by using the second physical relationship.
摘要:
In a method and a device for operating an internal combustion engine, a first variable characterizing the air-mass flow to the internal combustion engine is determined, and a second variable characterizing the air-mass flow is determined. The second variable characterizing the air-mass flow is used to derive a third variable characterizing the air-mass flow, which is delayed in time with respect to the second variable characterizing the air-mass flow. A difference is formed between the second variable characterizing the air-mass flow and the third variable characterizing the air-mass flow. The first variable characterizing the air-mass flow is corrected by the difference.
摘要:
A method and a device for operating an internal combustion engine having a mass-flow line are provided, which allow the actual charge to be adapted to the setpoint charge of the internal combustion engine at a desired dynamic. A mass flow is supplied to the internal combustion engine via the mass-flow line. A setpoint value is specified for a characteristic quantity of the mass flow to the internal combustion engine. The setpoint value of the characteristic quantity of the mass flow is formed starting from a balance of the mass flow flowing into the mass flow line and the mass flow discharged from the mass flow line according to a predefined time characteristic.
摘要:
A method for operating an internal combustion engine, in which at least one first influence variable influences a state variable of the air in the intake manifold. The state variable of the air in the intake manifold is ascertained while taking into account a plurality of influence variables, which influence the state variable, while using a first physical relationship. The same state variable is ascertained while taking into account a plurality of influence variables, which influence the state variable of the air in the intake manifold while using a second physical relationship. A specific adjusting parameter, which represents a specific error in the influence variable, is linked to each influence variable. The adjusting parameters are learned and monitored in the operation of the internal combustion engine. A certain adjusting parameter is learned and monitored in an operating range of the internal combustion engine in which the other adjusting parameters have a lesser influence on the state variable than that certain adjusting parameter, and in this context, the certain adjusting parameter is adjusted in such a way that the state variable ascertained by using the first physical relationship is at least approximately equal to the state variable ascertained by using the second physical relationship.
摘要:
A method and a device for operating an internal combustion engine having a mass-flow line are provided, which allow the actual charge to be adapted to the setpoint charge of the internal combustion engine at a desired dynamic. A mass flow is supplied to the internal combustion engine via the mass-flow line. A setpoint value is specified for a characteristic quantity of the mass flow to the internal combustion engine. The setpoint value of the characteristic quantity of the mass flow is formed starting from a balance of the mass flow flowing into the mass flow line and the mass flow discharged from the mass flow line according to a predefined time characteristic.