摘要:
A systems for test elements used for clinical chemical analyses has several test elements, each of which is individually sealed to be impermeable to water vapor. The method provides for the removal of test elements and protects the test elements contained in it against effects from the outside.
摘要:
A system for analyzing sample liquids using dry reagents which is particularly suitable for the determination of clinical parameters. The system includes an analysis instrument containing the individually sealed test elements to carry out an analytical test. Shape and nature of the test elements were designed to match the analysis system. The system is particularly suitable for analyses where the available test elements exhibit a low storage stability when brought into contact with the environment.
摘要:
A system for analyzing sample liquids using dry reagents which is particularly suitable for the determination of clinical parameters. The system includes an analysis instrument containing the individually sealed test elements to carry out an analytical test. Shape and nature of the test elements were designed to match the analysis system. The system is particularly suitable for analyses where the available test elements exhibit a low storage stability when brought into contact with the environment.
摘要:
The system has several test elements, each of which is individually sealed to be impermeable to water vapor. The system storing test elements facilitates removal of test elements and protects the test elements contained in it against effects from the outside.
摘要:
The invention is within the field of packaging and storing of test elements that are usually sensitive towards atmospheric humidity or water vapor. The invention concerns a system for the storage of test elements for the analysis of sample liquids in which two or more test elements are present in a storage container which can be sealed water-vapor tight and contains a desiccant inside.
摘要:
Test carrier for analyzing a sample fluid with several test layers which form a sample fluid transport path and contain a reagent system which reacts with the sample fluid to produce a detectable signal. The test carrier includes a reservoir layer of absorbent material, a detection layer arranged in the fluid transport path downstream the reservoir layer, in which a detectable signal is formed, and a separating layer arranged between the reservoir layer and the detection layer. The separating layer makes a two-step process possible. Fluid contact between the reservoir layer and the detection layer arises only with pressure loading of the layer assembly of the reservoir layer, separating layer and detection layer. A more uniform optical detection signal, and consequently better accuracy, can be achieved because the separating layer is made up of a hydrophilic material, wich is in the form of a lattice-shaped structure, in which the mean width of the lattice openings is more than 0.05 mm, and the threads from which the lattice-shaped structure is formed are multi-filament.
摘要:
The present invention provides a test carrier for the analysis of a sample liquid and especially of a body fluid, having a porous test layer (8, 13) which contains a solid component (9, 17), wherein the solid component (9, 17) is coated with a protein which is insoluble in the sample liquid under the test conditions. A process for the production of this test layer is also disclosed, wherein the protein is dissolved in a solvent under conditions under which the solubility of the protein is sufficiently high in order to dissolve a certain minimum amount of the protein, the solid component of the test layer is contracted with the solution and the solubility is reduced to such an extent that the component is coated by the precipitating protein.
摘要:
A system is provided for measuring an analyte concentration in a body fluid sample, comprising at least one cartridge that contains consumables for multiple measurements, a data carrier affixed to the cartridge that contains calibration information for the consumables, a hand-held device including a reading facility for receiving a cartridge of this type and for reading its data carrier, a measuring facility for measuring the result of a detection reaction, and a processor for controlling the measuring facility and for analysis of a measuring signal. At least one replaceable data storage unit is further provided in which supplementary data is stored. The data storage unit functions in combination with calibration information from the data carrier and is used by the processor to determine whether the consumables of the inserted cartridge renders a reliable measurement of analyte concentration.
摘要:
Embodiments of a testing method suitable for diabetic persons to optimize their administered insulin dosage comprise collecting one or more sampling sets of biomarker data, wherein each sampling set comprises a sufficient plurality of non-adverse sampling instances and wherein each sampling instance comprises an acceptable biomarker reading at a single point in time recorded upon compliance with adherence criteria, determining a biomarker sampling parameter from each sampling set, comparing the biomarker sampling parameter to a target biomarker range, calculating an insulin adjustment parameter associated with the biomarker sampling parameter if the biomarker sampling parameter falls outside the target biomarker range, adjusting the insulin dosage by the insulin adjustment parameter if the biomarker sampling parameter falls outside the target biomarker range and if the insulin dosage does not exceed maximum dosage, and exiting the testing method if the adjusted insulin dosage is optimized. The insulin dosage is optimized when one or more biomarker sampling parameters fall within a target biomarker range.
摘要:
An automatic analyzer is disclosed that dispenses a sample and a reagent into each of a plurality of reaction vessels to allow them to react with each other, and that measures the liquid formed as a result of the reaction. This automatic analyzer includes a first reagent storage case for storing the reagent to be used for the reaction, a second reagent storage case for storing the reagent for supplemental purpose, and a reagent conveying unit for conveying the reagent from the second reagent storage case to the first reagent storage case.