Abstract:
Adding to a fuel oil a composition of from about 1 to about 40 parts by weight ethylene/vinyl acetate copolymer having a vinyl acetate content of from about 10% by weight to about 50% by weight and a weight average molecular weight of from about 2,000 to about 10,000, and 1 part by weight esterified copolymer of at least one generally linear .alpha.-olefin of from about 18 to about 50 carbon atoms and maleic anhydride in an .alpha.-olefin to maleic anhydride molar ratio of from about 4:1 to about 1:2, the copolymer having a weight average molecular weight of from about 2,000 to about 20,000, the esterified copolymer having been esterified with a plurality of aliphatic alcohols having from about four to about forty carbon atoms, imparts to the fuel oil surprisingly improved low temperature fluidity, provided that the alcohols include an eight carbon alcohol making up from about 50 to about 85 molar percent of the alcohols.
Abstract:
Compounds having the formulae and general formulae: wherein each R1, R2, R3 and R4 are the same or different and may be hydrogen, an alkyl group, an aryl group, a halogen, a nitro group, an alkyl or aryl ester, and an alkyl or aryl ether; compounds having the general formula: wherein R is an alkyl, aryl or electron withdrawing group; mixtures thereof; can be used as additives for crude oil and hydrocarbons. These compounds may be used to scavenge mercaptans, sulfides, cyanides, and primary or secondary amines; either alone or in combination.
Abstract:
The present invention provides a method for inhibiting the evolution of H2S from sulfhydryl compounds in molten sulfur by using scavenging agents such as anhydrides and polymers thereof, conjugated ketones, carbonates, epoxides, monoesters and diesters of unsaturated dicarboxylic acids and polymers of these esters, and the like and mixtures thereof. In one embodiment, it is preferred that the scavenging agent is in liquid form at contact temperature with the molten sulfur. In another embodiment, the scavenging agent may be atomized into the vapor space over the molten sulfur to contact the sulfur with the agent.
Abstract:
Adding to a fuel oil a composition of from about 1 to about 40 parts by weight ethylene/vinyl acetate copolymer having a vinyl acetate content of from about 10% by weight to about 50% by weight and a weight average molecular weight of from about 2,000 to about 10,000, and 1 part by weight esterified copolymer of at least one generally linear .alpha.-olefin of from about 18 to about 50 carbon atoms and maleic anhydride in an .alpha.-olefin to maleic anhydride molar ratio of from about 4:1 to about 1:2, the copolymer having a weight average molecular weight of from about 2,000 to about 20,000, the esterified copolymer having been esterified with a plurality of aliphatic alcohols having from about four to about forty carbon atoms, imparts to the fuel oil surprisingly improved low temperature fluidity, provided that the alcohols include an eight carbon alcohol making up from about 50 to about 85 molar percent of the alcohols.
Abstract:
The present invention provides a method for inhibiting the evolution of H2S from sulfhydryl compounds in molten sulfur by using scavenging agents such as anhydrides and polymers thereof, conjugated ketones, carbonates, epoxides, monoesters and diesters of unsaturated dicarboxylic acids and polymers of these esters, and the like and mixtures thereof. In one embodiment, it is preferred that the scavenging agent is in liquid form at contact temperature with the molten sulfur. In another embodiment, the scavenging agent may be atomized into the vapor space over the molten sulfur to contact the sulfur with the agent.
Abstract:
Compounds having the formulae and general formulae: wherein each R1, R2, R3 and R4 are the same or different and may be hydrogen, an alkyl group, an aryl group, a halogen, a nitro group, an alkyl or aryl ester, and an alkyl or aryl ether; compounds having the general formula: wherein R is an alkyl, aryl or electron withdrawing group; mixtures thereof; can be used as additives for crude oil and hydrocarbons. These compounds may be used to scavenge mercaptans, sulfides, cyanides, and primary or secondary amines; either alone or in combination.
Abstract:
An effective hydrogen sulfide scavenger that produces little corrosion may be prepared by reacting glyoxal with a compound having at least two primary or secondary amine groups. The subject hydrogen sulfide scavengers may be used with both the production of crude oil and natural gas, and the refining of same.
Abstract:
This invention relates to polyalkylenes which contain both halogen and ester groups, to the preparation thereof, and to the use thereof as pour depressants for fuel oils. This invention also relates to polyalkylene esters.
Abstract:
A clayish subterranean formation, such as may be encountered in rock surrounding a well bore during hydrocarbon recovery operations may be stabilized with relatively high molecular weight acid ammonium salts of an imide of polymaleic anhydride. The salts may be unneutralized or partially neutralized. The invention is particularly relevant to hydraulic fracturing fluids used in enhanced oil recovery. The compositions herein are made in the presence of a reactive solvent, such as a polyalkylene glycol, e.g. polyethylene glycol. The compositions of this invention are more environmentally friendly than some current technology.
Abstract:
A clayish subterranean formation, such as may be encountered in rock surrounding a well bore during hydrocarbon recovery operations may be stabilized with a polyamine salt of an imide of polymaleic anhydride. The salt may be unneutralized or partially neutralized. The invention is particularly relevant to hydraulic fracturing fluids used in enhanced oil recovery. The compositions of this invention are more environmentally friendly than some current technology.