摘要:
The invention includes a semiconductor construction having a wire bonding region associated with a metal-containing layer, and having radiation-imageable material over the metal-containing layer. The radiation-imageable material can be configured as a multi-level pattern having a first topographical region with a first elevational height and a second topographical region with a second elevational height above the first elevational height. The second topographical region can be laterally displaced from the bonding region by at least a lateral width of the first topographical region, with said lateral width being at least about 10 microns. Additionally, or alternatively, the elevational height of the second topographical region can be at least about 2 microns above the elevational height of the first topographical region. The invention also includes a method of forming wire bonds for semiconductor constructions in which a multi-level pattern is photolithographically formed in a radiation-imageable material (such as, for example, polyimide).
摘要:
The invention includes a semiconductor construction having a wire bonding region associated with a metal-containing layer, and having radiation-imageable material over the metal-containing layer. The radiation-imageable material can be configured as a multi-level pattern having a first topographical region with a first elevational height and a second topographical region with a second elevational height above the first elevational height. The second topographical region can be laterally displaced from the bonding region by at least a lateral width of the first topographical region, with said lateral width being at least about 10 microns. Additionally, or alternatively, the elevational height of the second topographical region can be at least about 2 microns above the elevational height of the first topographical region. The invention also includes a method of forming wire bonds for semiconductor constructions in which a multi-level pattern is photolithographically formed in a radiation-imageable material (such as, for example, polyimide).
摘要:
A method to provide a ground point for second, or subsequent, e-beam mask-writing steps by selectively removing the photoresist edge bead of a photomask substrate to expose the underlying chrome layer. The selective removal leaves at least one tab of photoresist edge bead over the chrome layer. After the first e-beam mask writing step and subsequent etch, the tab can be removed to expose a portion of the chromium layer that can act as a new ground point for a second e-beam etch. Also, a nozzle for use in selectively removing the edge bead to leave a tab of photoresist edge bead.
摘要:
The invention includes reticles and methods of forming reticles. In one aspect, a reticle can include a quartz-containing substrate, an attenuating layer, and an antireflective structure between the attenuating layer and the quartz-containing substrate. The invention can also include a reticle having a relatively transparent region between first and second surfaces, a relatively opaque region proximate the first surface, and a layer comprising one or both of metal fluoride and hafnium oxide proximate the first or second surface. The invention can also include methods of forming reticles in which an antireflective structure is formed over a surface of a quartz-containing substrate. The antireflective structure can comprise a Fabry-Perot pair, and in some aspects can comprise a layer containing one or both of metal fluoride and hafnium oxide.
摘要:
An apparatus for baking a film onto a substrate. A film, such as a layer of photoresist, is disposed on a first surface of a substrate while a second surface is exposed to a liquid bath. The liquid bath is maintained at a pre-selected temperature. Exposure of the substrate to the liquid bath allows the film on the opposite surface to bake. The liquid bath is re-circulated to maintain a constant and uniform temperature gradient across the substrate.
摘要:
The invention includes methods of converting reticles from configurations suitable for utilization with later generation (shorter wavelength) stepper radiations to configurations suitable for utilization with earlier generation (longer wavelength) stepper radiations. The invention can be utilized for converting a reticle from a configuration suitable for 193 nanometer wavelength radiation to a configuration suitable for 248 nanometer wavelength radiation. In such aspect, a quartz-containing material of a substrate can be protected with a patterned layer consisting essentially of molybdenum and silicon while the quartz-containing material is subjected to a dry etch. The configuration suitable for 248 nanometer wavelength radiation can be constructed so that a phase of 248 nanometer wavelength radiation is shifted by about 180° upon passing through combined thicknesses of the patterned layer and the quartz-containing material, relative to 248 nanometer wavelength radiation which passes only through the quartz-containing material.
摘要:
A method to provide a ground point for second, or subsequent, e-beam mask-writing steps by selectively removing the photoresist edge bead of a photomask substrate to expose the underlying chrome layer. The selective removal leaves at least one tab of photoresist edge bead over the chrome layer. After the first e-beam mask writing step and subsequent etch, the tab can be removed to expose a portion of the chromium layer that can act as a new ground point for a second e-beam etch. Also, a nozzle for use in selectively removing the edge bead to leave a tab of photoresist edge bead.
摘要:
The present invention provides an attenuated phase shift mask (“APSM”) that, in each embodiment, includes completely transmissive regions sized and shaped to define desired semiconductor device features, slightly attenuated regions at the edges of the completely transmissive regions corresponding to isolated device features, highly attenuated regions at the edges of completely transmissive regions corresponding to closely spaced or nested device features, and completely opaque areas where it is desirable to block transmission of all radiation through the APSM. The present invention further provides methods for fabricating the APSMs according to the present invention.
摘要:
The present invention provides an attenuated phase shift mask (“APSM”) that, in each embodiment, includes completely transmissive regions sized and shaped to define desired semiconductor device features, slightly attenuated regions at the edges of the completely transmissive regions corresponding to isolated device features, highly attenuated regions at the edges of completely transmissive regions corresponding to closely spaced or nested device features, and completely opaque areas where it is desirable to block transmission of all radiation through the APSM. The present invention further provides methods for fabricating the APSMs according to the present invention.
摘要:
The invention includes reticles and methods of forming reticles. In one aspect, a reticle can include a quartz-containing substrate, an attenuating layer, and an antireflective structure between the attenuating layer and the quartz-containing substrate. The invention can also include a reticle having a relatively transparent region between first and second surfaces, a relatively opaque region proximate the first surface, and a layer comprising one or both of metal fluoride and hafnium oxide proximate the first or second surface. The invention can also include methods of forming reticles in which an antireflective structure is formed over a surface of a quartz-containing substrate. The antireflective structure can comprise a Fabry-Perot pair, and in some aspects can comprise a layer containing one or both of metal fluoride and hafnium oxide.