摘要:
A heat transfer apparatus comprises a load frame having load springs and an open region that exposes an electronic component. The load frame is mounted to a printed circuit board on which the electronic component is mounted. A heat sink assembly is disposed on the load frame and has a main body in thermal contact with the electronic component through a thermally conductive material. The heat sink assembly has load arms for engaging the load springs. A load plate extends between the load arms and has an actuation element operative to displace the main body relative to the load plate and thereby resiliently deform the load springs and produce a load force that compresses the thermally conductive material to achieve a desired thermal interface gap between the main body and the electronic component. Non-influencing fasteners secure the heat sink to the load frame and maintain the desired thermal interface gap.
摘要:
A heat transfer apparatus comprises a thermally conductive member including a base having one or more surfaces adapted to absorb heat from an electronic component, and a mounting assembly including at least one mounting member directly coupled to the base and for direct attachment to the electronic component so that loading forces for mounting on it the electronic component are not directly applied to the base. The thermally conductive member is a graphite-based material. A compliant force applying mechanism is mounted generally on the base for controlling forces applied on the base.
摘要:
An apparatus adapted for use in a field replacement unit that is to be coupled to an electronic module. Included in the apparatus are a cover assembly; a biasing assembly disposed within the cover assembly; and, an aligning and coupling mechanism retained in the cover assembly in juxtaposed relation with the biasing assembly for mounting an interposer assembly in a manner, whereby the interposer assembly is generally self-aligned along in-plane axes with respect to the cover assembly for subsequent coupling to an electronic module. A method for use of the apparatus is disclosed.
摘要:
The illustrative embodiments provide a socket, a method for manufacturing the socket, a device, and a method for compensating for a difference in the coefficients of thermal expansion between a socket and a printed circuit board. The socket includes surface mounted contacts and an elongated housing. The elongated housing comprises an aperture, wherein the surface mounted contacts extend from the aperture. At least one plate connects to the elongated housing, wherein the at least one plate has a coefficient of thermal expansion selected to compensate for a difference in coefficients of thermal expansion between the socket and a printed circuit board.
摘要:
Apparatus and method include using a bare die microelectronic device; a heat sink assembly; a heat sink mounting assembly for mounting the heat sink assembly independently of the bare die microelectronic device; and, a force applying mechanism that compression loads, under controlled forces, a surface of the bare die into a direct heat transfer relationship at a thermal interface with a heat sink assembly.
摘要:
A reflow heating system includes a housing assembly defining an internal thermal processing chamber that encapsulates at least a microelectronic assembly on a substrate. A first heating source is coupled to the housing assembly and within the thermal processing chamber. The first heating source is biased by a force-applying assembly into engagement with the microelectronic assembly. The first heating source comprises one or more heating platens adapted to engage the microelectronic assembly for applying direct heat sufficient to melt solder. A vacuum assembly is incorporated in the heating platen for allowing application of at least a partial vacuum to the microelectronic assembly to permit withdrawal thereof from the substrate. A radiant heating source is applied beneath the substrate and a directional heating source is applied to the microelectronic assembly.
摘要:
A tamper resistant enclosure for an electronic circuit includes an inner copper case, a tamper sensing mesh wrapped around the inner case, an outer copper case enclosing the inner case and the tamper sensing mesh, and a venting device forming a vent channel from inside the inner case to outside the outer case, the vent channel passing between overlapping layers of the tamper sensing mesh and having at least one right angle bend along its length. The venting device consists of two strips of a thin polyamide coverlay material laminated together along their length, and a length of wool yarn sandwiched between the two thin strips and extending from one end of the strips to the other end of the strips to form the vent channel. The length of yarn follows a zig-zag path between the first and second strips, the zig-zag path including at least one right angle bend.
摘要:
The present invention relates to a biomimetic process for preparation of nanosized magnetite particles used for the enhancement of magnetic resonance imaging contrast.
摘要:
Disclosed are heat management method, and system, and computer program product that include at least one optical strain gauge that is mounted on a printed board in proximity to an object being monitored for temperature changes. Power for controlling heat to the object is modified in response to changes in the optical reference signal of the gauge, whereby such changes are correlated to the rate of strain change in the object as measured relative to predefined temperature changes of the object being monitored.
摘要:
A heat transfer assembly includes a printed circuit board assembly supporting an electronic component assembly including one or more semiconductor chips. A heat sink assembly is adapted to be placed in thermal engagement with the one or more semiconductor chips. Included is a loading assembly for loading the one or more semiconductor chips toward engagement with the heat sink assembly. An encapsulating mechanism is provided that contains a sufficient amount of a thermally conductive medium to transfer heat between a surface of one or more of the semiconductor chips and the heat sink assembly, wherein the thermally conductive medium fills any gaps or space between the one or more semiconductor chips and the heat sink assembly.