Abstract:
A multi-purpose sheet material comprising an absorbent layer and a cut-resistant material in contact with the absorbent layer. The cut-resistant material can comprise a cut-resistant support system, such as cut-resistant support element formed in the absorbent layer for example. The cut-resistant material may alternatively comprise cut-resistant particles, such as polymer particles having an average size of at least about 100 micrometers for example. Preferably, the sheet material exhibits an absorbent efficiency of at least about 0.2 and a slice resistance of at least about 30 kgf/cm, and more preferably an absorbent efficiency of at least about 1.0 and a slice resistance of at least about 40 kgf/cm. It is also preferred that sheet material exhibit a cut-resistance of at least about 30 kgf/cm, an absorbent efficiency of at least about 0.2, and a wet abrasion loss of less than about 400 mg per 100 revolutions.
Abstract:
A multi-purpose sheet material comprising an absorbent layer and a cut-resistant material in contact with the absorbent layer. The cut-resistant material can comprise a cut-resistant support system, such as cut-resistant support element formed in the absorbent layer for example. The cut-resistant material may alternatively comprise cut-resistant particles, such as polymer particles having an average size of at least about 100 micrometers for example. Preferably, the sheet material exhibits an absorbent efficiency of at least about 0.2 and a slice resistance of at least about 30 kgf/cm, and more preferably an absorbent efficiency of at least about 1.0 and a slice resistance of at least about 40 kgf/cm. It is also preferred that sheet material exhibit a cut-resistance of at least about 30 kgf/cm, an absorbent efficiency of at least about 0.2, and a wet abrasion loss of less than about 400 mg per 100 revolutions.
Abstract:
A cut-resistant and shred-resistant absorbent sheet material including an absorbent substrate and cut-resistant particles distributed through the substrate. Preferably, the absorbent substrate comprises cellulosic material and the particles comprise polymeric materials having an average size of at least about 100 micrometers, and most preferably between 100 and 1000 micrometers. It is also preferred that the absorbent substrate is provided in an amount of at least 50 percent by weight and is substantially free of inorganic free filler particulate. In addition, it is preferred that the sheet material has a basis weight of at least 100 pounds per 3000 ft2, and that the particles are provided in an amount of between about 10 percent and about 50 percent by weight of the sheet. The sheet material can be made using typical paper making processes. Preferably, heat and/or pressure are applied to the sheet material to cause the particles to at least partially flow, so as to bond to the absorbent substrate. It is also preferred that the sheet material exhibit an absorbent efficiency of at least 0.2, a cut-resistance at least 30 kgf/cm, a wet abrasion loss of less than about 400 mg/100 revolutions, and a dry abrasion loss of less than about 300 mg/100 revolutions.
Abstract:
A dispensing closure for a liquid container is arranged to sealingly attach to an opening of the container. The closure comprises at least one storage compartment formed integrally with the closure and arranged for storing a substance. Each storage compartment has a depressible upper portion and is arranged so that depressing the upper portion of a storage compartment facilitates release of the respective substance into the container. The dispensing closure further comprises a dispenser protruding through the closure. The dispenser includes a dispensing lid movable between a closed and an open configuration, so that in an open configuration, liquid contained in the container can be dispensed therefrom.
Abstract:
The present invention relates to a process of using steam to achieve simultaneous impregnation and drying of lignocellulosic material to improve the strength of lignocellulosic material and to reduce the number of serial processing steps. The steam may be either indigenously generated by way of a heated press or heated nip, or the steam may be externally applied.
Abstract:
An aerosol generator device has an elongate body with an interior passageway extending longitudinally to its mouth end. The device receives an interchangeable, pressurised canister charged with a nicotine containing liquid that is discharged in a metered dose on manual actuation of a button member that causes a valve in the canister to open and discharge through a discharge tube. A sleeve releaseably couples the canister to the body. The button member is slidably mounted on the body for reciprocal movement along a trigger axis Y-Y′ extending transversely of the longitudinal axis X-X′ of the device, and has a manually depressible surface portion and a camming surface portion that drives a slidable nozzle member to press the discharge tube inwardly of the canister to open its valve and release liquid into the nozzle member. Nozzle forms an aerosol from the liquid, which is delivered to the consumer through outlets in the mouth end of the device.
Abstract:
A package for lathering a liquid personal care product, the package comprising: (a) a body for grasping with a user's hand, wherein the body comprises a horizontal plane defining a first cross-sectional shape; and (b) an applicator comprising a skin-contacting portion, wherein the skin-contacting portion comprises a horizontal plane defining a second cross-sectional shape; wherein each of the first cross-sectional shape and the second cross-sectional shape comprises a major dimension oriented along a first axis and a minor dimension oriented along a second axis, and wherein the major dimensions are greater than the minor dimensions.