摘要:
A system is described for arraying multi-device processing nodes in a 3-dimensional computing architecture and for flexibly connecting their ports. The topology of each processing node is of a fixed and constant physical geometry. The nodes may comprise a digital signal processor chip, a static RAM, and a communications and network controller. The nodes are mounted on boards. Selective connection of ports of each board to ports of another adjacent board is effected by a routing and spacer element having internal routing paths.
摘要:
The number of circuit path crossover points on boards mounting plural connected multichip modules is substantially reduced over the number that would otherwise be required. For 4-sided modules and boards, the modules are arranged on the board in such a way that their inter-connecting north-east-south-west ports are successively reordered to N-S-E-W. Additionally, further advantage in reducing crossover vias may be gained by combining the reordering with a phased rotation of the modules from their nominal congruent board position. For the 4-sided module, these expedients virtually eliminate crossover vias between the east and west ports. It also provides for all MCMs a ready common bus structure located at a common interior area of the mounting board, to which the E- and W-ports are oriented. The invention is applicable to a class of multi-sided, multi-chip modules on boards with a like number of sides.
摘要:
Disclosed is an article comprising a stacked array of electronic subassemblies, each subassembly including one or more integrated circuits and a thermally conductive base member that is perforated with holes. Motivating means are provided for causing a coolant fluid to pass through the holes in a direction substantially parallel to the stacking axis.
摘要:
An assembly for coupling an optical fiber to a light emitter or detector comprises a silicon block having features that make possible easy alignment of the emitter or detector with the end of the optical fiber. The features comprise a through-aperture with sloping walls that receives and positions the end of the fiber in a predetermined location, and precisely defined conductive features that serve as alignment markers in the placement of the emitter or detector.
摘要:
Disclosed is a novel "hermetic" optical assembly. A radiation-transmissive member seals an aperture in the assembly housing. The member comprises two major surfaces and a recess that extends from one surface towards the other, with a "septum" between the bottom of the recess and the other surface. An optical or opto-electronic device typically is mounted on the inside surface of the member, and the end of an optical fiber is maintained outside of the assembly in coupling relationship with the device. In a currently preferred embodiment the recess extends from the outward-facing surface of the member and serves to position the end of the optical fiber with respect to a device mounted in a "well" in the inward-facing surface of the member. In another embodiment, the outward facing surface of the member comprises geometrical features (e.g., recesses) that mate with corresponding features (e.g., protrusions) on a guide plate that serves to position the ends of a multiplicity of fibers with respect to devices mounted on the bottom of a recess extending from the inward-facing surface of the radiation-transmissive member. In all embodiments radiation is transmitted through the septum. In preferred embodiments the radiation-transmissive member is (100) Si, with the recess (and other features) produced by means comprising photolithography and anisotropic etching.
摘要:
The disclosed means for coupling an optical fiber and an opto-electronic device (e.g., LED, Laser, or photodetector) comprises a first body having two substantially parallel major surfaces, with a recessed portion (a "well") formed in one surface, and a through-aperture extending from the other surface to the well. Conductive means extend from the former surface onto the bottom of the well, and the opto-electronic device is to be mounted in the well such that the device does not protrude above the plane of the associated surface, such that electrical contact is established between the device and the conductive means, and such that the active region of the device is centered upon the through-aperture. The first body is advantageously from a (100) Si wafer by means of standard Si processing techniques, including selective etching. The assembly can be mounted on a substrate, e.g., a Si wafer with appropriate metallization thereon, and the end of an optical fiber inserted into the through-aperture and secured to the first body. The assembly can be operated at relatively high speed, due to its relatively low parasitic capacitance and inductance, and can be mounted on the substrate in substantially the same way as IC chips are mounted, in close proximity to associated electrical components.
摘要:
A new method for fabricating optical assemblies (OAs), which achieves increased throughput and reduced unit cost by mass producing optical subassemblies (OSAs), is disclosed. In accordance with this method, at least two OSAs are simultaneously produced by initially forming at least two corresponding sets of electrically conductive regions on the surface of a substrate. At least two optoelectronic devices are mounted on the surface of the substrate, with each device in electrical contact with one of the two conductor sets. Afterward, the substrate is separated into at least two parts, with each part including one of the optoelectronic devices and one of the conductor sets, constituting an OSA. Each OSA is then incorporated into an OA.