摘要:
A process for depositing a conformable nickel coating on a lead frame is disclosed. The metal lead frame substrate is copper, copper alloy, or nickel alloy. The lead frame substrate is coated with a conformable nickel coating that is crack-resistant when the lead frame is bent to an angle of at least about 82 degrees with a bend radius of about 100 .mu.m to about 300 .mu.m. Cracks do not appear through the thickness of the conformable nickel coating of the present invention when the depth of the deformations that result from this bending do not exceed about 5 .mu.m. The conformable nickel coating is formed using an electroplating bath containing nickel as a nickel complex, a nickel salt, a buffer and a fluorochemical wetting agent.
摘要:
The present invention is directed to a lead frame in which the metal lead frame substrate is copper, copper alloy, or iron alloy. The lead frame substrate is coated with a conformable nickel coating that is crack-resistant when the lead frame is bent to an angle of at least about 82 degrees with a bend radius of about 100 &mgr;m to about 300 &mgr;m. Bending the lead frame in this manner causes surface deformations in the lead frame substrate. Cracks do not appear through the thickness of the conformable nickel coating of the present invention when the depth of the deformations that result from this bending do not exceed about 5 &mgr;m.
摘要:
The present invention is directed to a lead frame in which the metal lead frame substrate is copper, copper alloy, or nickel alloy. The lead frame substrate is coated with a conformable nickel coating that is crack-resistant when the lead frame is bent to an angle of at least 82 degrees with a bend radius of about 150 .mu.m to about 300 .mu.m. Bending the lead frame in this manner causes surface deformations in the lead frame substrate. Cracks do not appear through the thickness of the conformable nickel coating of the present invention when the depth of the deformations that result from this bending do not exceed about 5 .mu.m.
摘要:
A lead frame comprising an ultra-thin composite of noble metal layers on a nickel surface is disclosed. The composite ranges from 2.5 to 11 microinches in thickness and includes in succession from nickel, a 0.5 to 3.5 microinches of palladium or gold strike, a 0.5 to 5 microinches thick palladium-nickel alloy layer having 10 to 90 weight percent nickel by weight of the alloy, a 0.5 to 5 microinches thick palladium layer, and a 0 to 1 microinch thick gold layer. The gold layer is being used whenever it is desirable to achieve high speed of solder wetting, relative to the speed of solder wetting of palladium. Viable ultra-thin coatings are most effectively obtained by deposition of the layers in a reel-to-reel metal deposition process.