摘要:
A molecularly imprinted polymer (MIP) sensor including a substrate, two or more electrodes, a conductive layer applied to the substrate and a molecularly imprinted polymer layer applied to the conductive layer is disclosed herein The MIP sensor may form part of an MIP sensor system that can be used to detect and quantify target molecules.
摘要:
A molecularly imprinted polymer (MIP) sensor including a substrate, two or more electrodes, a conductive layer applied to the substrate and a molecularly imprinted polymer layer applied to the conductive layer is disclosed herein The MIP sensor may form part of an MIP sensor system that can be used to detect and quantify target molecules.
摘要:
Disclosed herein are engineered composite materials suitable for applications that can benefit from a composite material capable of interacting with or responding to, in a controlled or pre-determined manner, changes in its surrounding environment. The composite material is generally includes a gradient layer structure of a sequence of at, e.g., three or more gradient-contributing layers of microscale particles, wherein a mean particle size of particles of neighboring gradient-contributing layers in the cross section of the gradient layer structure varies from layer to layer, thereby forming a particle size gradient, and in contact with the gradient layer structure, a densely packed particle structure including densely packed microscale particles, wherein a mean particle size of the densely packed microscale particles does not form a particle size gradient in the cross section of the densely packed particle structure.
摘要:
Disclosed herein are engineered composite materials suitable for applications that can benefit from a composite material capable of interacting with or responding to, in a controlled or pre-determined manner, changes in its surrounding environment. The composite material is generally includes a gradient layer structure of a sequence of at, e.g., three or more gradient-contributing layers of microscale particles, wherein a mean particle size of particles of neighboring gradient-contributing layers in the cross section of the gradient layer structure varies from layer to layer, thereby forming a particle size gradient, and in contact with the gradient layer structure, a densely packed particle structure including densely packed microscale particles, wherein a mean particle size of the densely packed microscale particles does not form a particle size gradient in the cross section of the densely packed particle structure.
摘要:
A shock wave attenuating material (100) includes a substrate layer (104). A plurality (110) of shock attenuating layers is disposed on the substrate layer (104). Each of the plurality (110) of shock attenuating layers includes a gradient nanoparticle layer (114) including a plurality of nanoparticles (120) of different diameters that are arranged in a gradient from smallest diameter to largest diameter and a graphitic layer (118) disposed adjacent to the gradient nanoparticle layer. The graphitic layer (118) includes a plurality of carbon allotrope members (128) suspended in a matrix (124).
摘要:
A method of selecting ions includes generating a group of ions, accelerating the group of ions through a flight region towards an electronic mass selector grid, and selectively varying a voltage applied to the electronic mass selector grid, such that only a selected subset of the group of ions passes through the grid. An apparatus for selecting ions includes an ion generator, an ion accelerator for accelerating ions into a flight region, and an electronic mass selector grid responsive to an applied voltage to pass a subset of the ions from the flight region. An apparatus for detecting a threat molecule includes an ion generator for generating ions from a mixed gas stream, an ion accelerator for accelerating the ions into a flight region, and an electronic mass selector grid. The grid passes only a subset of the ions, such as ions and/or ionized fragments of the threat molecule.
摘要:
A molecularly imprinted polymer sensor for sensing a target molecule includes (a) a polymer film that is molecularly imprinted with the target molecule and includes a conductive polymer having resistance sensitive to binding with the target molecule and a structural polymer providing porosity to the polymer film, and (b) interdigitated electrodes, located on a surface of the polymer film, for measuring a change in the resistance to sense said binding.
摘要:
A method for producing a conductive molecularly imprinted polymer film for detection of an airborne target molecule includes (a) dissolving a polymer host comprising a structural component and a conductive component in a first solvent to form a first solution, wherein the structural component includes nylon-6 or polyethyleneimine and the conductive component includes polyaniline, (b) adding a target molecule to the first solution, (c) mixing the target molecule into the first solution to form a molecularly imprinted polymer solution, (d) coating the molecularly imprinted polymer solution onto a surface, (e) and removing the target molecule to form the conductive molecularly imprinted polymer film.