摘要:
A fluid level control valve has a base with an aperture formed therethrough. A cover is movably disposed over the aperture and is biased by a thermostatic element in a direction tending to close the aperture. The thermostatic element is a generally U-shaped strip having one end mounted on the base with its opposite end biased against the cover. The cover is adapted to pivot about one hinge at temperatures below a selected temperature value and pivot about a second hinge at temperatures above the selected value. A second embodiment particularly adapted to accommodate different flow rates employs a movable first hinge location.
摘要:
An oil level control valve (10) has a molded base (12) having an oil receiving aperture (12d) formed through a bottom wall (12e) with a circumscribing generally rectangular cover plate seat in which a cover plate (14) is removably received. A thermostatic element (16) in the form of a generally rectangular sheet is fastened to posts (12f) extending upwardly from sidewalls of the base by means of peg portions (12g, 12h) received through holes in the sheet and heat staked to the posts. The thermostatic element allows the cover plate to move away from the seat for optimum oil flow at low temperature conditions and restricts the valve opening as temperature of the oil increases to accommodate an increase in oil volume due to expansion in order to maintain the fluid level in the main sump of a transmission housing by allowing an increase in the fluid level of an auxiliary sump in accordance with target values for different flow rates. A second embodiment (10') shows the addition of a snap-on bracket (20) for convenient mounting of the control along with an associated installation tab (12k) for handling purposes.
摘要:
A fluid level control valve has a base with a precisely controlled aperture formed therein which mounts on a transmission oil reservoir. A cover is pivotably disposed over the aperture and is biased by a thermostatic element in a direction tending to close the aperture. The thermostatic element is an elongated flat strip having each end captured by a bracket formed in each end of the base. A calibration post is precisely positioned on the cover to work with the brackets to place the thermostatic element in the desired position to provide a preselected force on the cover. The base has legs extending from the periphery of the controlled aperture for precisely attaching the valve to the housing of the transmission oil reservoir.
摘要:
A circuit system has a semiconductor device mounted on a substrate which includes a composite metal material comprising a plurality of discrete elements of ferrous metal material such as an alloy of 36 percent nickel and the balance iron having a relatively low coefficient of thermal expansion, the discrete elements being copper-coated by electroless copper plating or the like and being pressed together and heated for sintering or diffusion-bonding the copper coatings together to form a continuous copper matrix having the discrete elements secured in dispersed relation therein for providing the composite metal material with a coefficient of thermal expansion relatively much lower than that of the copper material, the heating of the coated particles for diffusion bonding thereof being regulated for forming the continuous copper matrix while leaving the copper material of the matrix substantially free of nickel, ferrous or other constituents diffused therein from the discrete elements for providing the composite material with improved thermal conductivity.
摘要:
A novel composite metal material comprises a ferrous metal of relatively low thermal expansion properties and a silver metal substantially free of ferrous constituents having a relatively high thermal conductivity which cooperate in a novel way to provide the composite material with an effective thermal expansion coefficient corresponding to that of various silicon or gallium arsenide semiconductor devices and the like for reliably mounting the devices while also providing paths of high conductivity silver metal extending through the composite material to provide improved heat-dissipation from the semiconductor devices. A circuit system mounts a semiconductor device using the novel composite metal material alone, bonded to other support materials, or formed into a selected shape. In one preferred embodiment, the composite material is used in a novel heat-dissipating member having components of different shape which are bonded together. One component formed of the novel composite material has a selected shape for compactly mounting the semiconductor device and the second component is formed of high thermal conductivity metal and has a different shape particularly adapted to receive heat from the silver paths and to facilitate heat-dissipation from the member.
摘要:
A novel composite metal material comprises a ferrous metal of relatively low thermal expansion properties and a silver metal substantially free of ferrous constituents having a relatively high thermal conductivity which cooperate in a novel way to provide the composite material with an effective thermal expansion coefficient corresponding to that of various silicon or gallium arsenide semiconductor devices and the like for reliably mounting the devices while also providing paths of high conductivity silver metal extending through the composite material to provide improved heat-dissipation from the semiconductor devices. A circuit system mounts a semiconductor device using the novel composite metal material alone, bonded to other support materials, or formed into a selected shape. In one preferred embodiment, the composite material is used in a novel heat-dissipating member having components of different shape which are bonded together. One component formed of the novel composite material has a selected shape for compactly mounting the semiconductor device and the second component is formed of high thermal conductivity metal and has a different shape particularly adapted to receive heat from the silver paths and to facilitate heat-dissipation from the member. Novel methods for making the member and the composite material are shown.
摘要:
A method of forming an enclosure for an electric circuit and the enclosure wherein there is provided a boat of material having a bottom and side wall, placing a material having a substantially higher thermal conductivity and a lower melting point than that of the boat in the boat bottom, heating the material to a temperature above the melting point thereof and below the melting point of the boat to cause the material to flow along the bottom to form a layer of the material thereon and join the layer to the bottom and side wall and removing a sufficient amount of the bottom of said boat to expose the layer. In accordance with a second embodiment, a depression is formed in the bottom, and when the material flows along the bottom, it fills the depression and becomes joined to the bottom. Plural such depressions can be provided. The exterior portion of the bottom is removed to expose the material if the depressions do not extend completely through the bottom. In accordance with a third embodiment, a block of metal with a hole therethrough is provided, and filled with a material having a higher thermal conductivity than the block of metal and a melting point below that of the block of metal. The block of metal with material therein is heated to a temperature between the melting point of the material and the block of metal to fill the hole with the metal and join the metal to the block of material. The block is formed into plural smaller blocks and a side wall and a cover are formed around the filled hole.
摘要:
A method of forming an enclosure for an electric circuit and the enclosure wherein there is provided a boat of material having a bottom and side wall, placing a material having a substantially higher thermal conductivity and a lower melting point than that of the boat in the boat bottom, heating the material to a temperature above the melting point thereof and below the melting point of the boat to cause the material to flow along the bottom to form a layer of the material thereon and join the layer to the bottom and side wall and removing a sufficient amount of the bottom of said boat to expose the layer. In accordance with a second embodiment, a depression is formed in the bottom, and when the material flows along the bottom, it fills the depression and become joined to the bottom. Plural such depressions can be provided. The exterior portion of the bottom is removed to expose the material if the depressions do not extend completely through the bottom. In accordance with a third embodiment, a block of metal with a hole therethrough is provided, and filled with a material having a higher thermal conductivity than the block of metal and a melting point below that of the block of metal. The block of metal with material therein is heated to a temperature between the melting point of the material and the block of metal to fill the hole with the metal and join the metal to the block of material. The block is formed into plural smaller blocks and a side wall and a cover are formed around the filled hole.
摘要:
A flow regulating valve for air conditioning systems is shown in which a body member (26, 26a-26e) is provided with a passageway (28, 28a-28f) which results in regulating flow of refrigerant into the evaporator of the air conditioning system under normal conditions. Under severe operating conditions, e.g., high ambient temperature and low or idle speeds, the system refrigerant pressure rises. This increases pressure in the evaporator and an increase in the saturation temperature of refrigerant in the evaporator. This increase in temperature is sensed by a thermostatic metal element (44, 80, 88) of the regulating valve which moves to increase restriction to the flow of the refrigerant fluid through the valve thereby decreasing pressure of the refrigerant entering the evaporator. In several embodiments the thermostatic metal element is in the form of a helix (44) with one end fixed to the body member and the opposite end attached to a sleeve (38, 38d) in certain embodiments and an end cap (54, 60, 68) in other embodiments to rotate the sleeve or end cap to restrict fluid flow in an auxiliary passage. In other embodiments the thermostatic metal element is a relatively straight strip (80, 88) having one end fixed to the body member and its opposite end, in one embodiment, movable toward and away from an auxiliary inlet port (34) and in another embodiment the opposite end is attached to a block (94) having a relatively smaller effective passage (29e) movable into and out of alignment with a larger passage (31e) to change the effective level of flow restriction.
摘要:
A flow regulating valve for air conditioning systems is shown in which a body member (26, 26a-26e) is provided with a passageway (28, 28a-28f) which results in regulating flow of refrigerant into the evaporator of the air conditioning system under normal conditions. Under severe operating conditions, e.g., high ambient temperature and low or idle speeds, the system refrigerant pressure rises. This increases pressure in the evaporator and an increase in the saturation temperature of refrigerant in the evaporator. This increase in temperature is sensed by a thermostatic metal element (44, 80, 88) of the regulating valve which moves to increase restriction to the flow of the refrigerant fluid through the valve thereby decreasing pressure of the refrigerant entering the evaporator. In several embodiments the thermostatic metal element is in the form of a helix (44) with one end fixed to the body member and the opposite end attached to a sleeve (38, 38d) in certain embodiments and an end cap (54, 60, 68) in other embodiments to rotate the sleeve or end cap to restrict fluid flow in an auxiliary passage. In other embodiments the thermostatic metal element is a relatively straight strip (80, 88) having one end fixed to the body member and its opposite end, in one embodiment, movable toward and away from an auxiliary inlet port (34) and in another embodiment the opposite end is attached to a block (94) having a relatively smaller effective passage (29e) movable into and out of alignment with a larger passage (31e) to change the effective level of flow restriction.