摘要:
Improved nano-electromechanical system devices and structures and systems and techniques for their fabrication. In one embodiment, a structure comprises an underlying substrate separated from first and second anchor points by first and second insulating support points, respectively. The first and second anchor points are joined by a beam. First and second deposition regions overlie the first and second anchor points, respectively, and the first and second deposition regions exert compression on the first and second anchor points, respectively. The compression on the first and second anchor points causes opposing forces on the beam, subjecting the beam to a tensile stress. The first and second deposition regions suitably exhibit an internal tensile stress having an achievable maximum varying with their thickness, so that the tensile stress exerted on the beam depends at least on part on the thickness of the first and second deposition regions.
摘要:
A three-dimensional (3D) chip stack structure and method of fabricating the structure thereof are provided. The 3D chip stack structure includes a plurality of vertically stacked chips which are interconnected and bonded together, wherein each of the vertically stacked chips include one or more IC device strata. The 3D chip stack structure further includes an air channel interconnect network embedded within the chip stack structure, and wherein the air channel interconnect network is formed in between at least two wafers bonded to each other of the vertically stacked wafers and in between at least two bonded wafers of the vertically stacked wafers at a bonding interface thereof. In addition, the 3D chip stack structure further includes one or more openings in a peripheral region of the chip stack structure that lead into and out of the air channel interconnect network, so that air can flow into and out of the air channel interconnect network through the one or more openings to remove heat from the chip stack structure.
摘要:
A three-dimensional (3D) chip stack structure and method of fabricating the structure thereof are provided. The 3D chip stack structure includes a plurality of vertically stacked chips which are interconnected and bonded together, wherein each of the vertically stacked chips include one or more IC device strata. The 3D chip stack structure further includes an air channel interconnect network embedded within the chip stack structure, and wherein the air channel interconnect network is formed in between at least two wafers bonded to each other of the vertically stacked wafers and in between at least two bonded wafers of the vertically stacked wafers at a bonding interface thereof. In addition, the 3D chip stack structure further includes one or more openings in a peripheral region of the chip stack structure that lead into and out of the air channel interconnect network, so that air can flow into and out of the air channel interconnect network through the one or more openings to remove heat from the chip stack structure.
摘要:
A three dimensional integrated circuit includes a silicon substrate, a first source region disposed on the substrate, a first drain region disposed on the substrate, a first gate stack portion disposed on the substrate, a first dielectric layer disposed on the first source region, the first drain region, the first gate stack portion, and the substrate, a second dielectric layer formed on the first dielectric layer, a second source region disposed on the second dielectric layer, a second drain region disposed on the second dielectric layer, and a second gate stack portion disposed on the second dielectric layer, the second gate stack portion including a graphene layer.
摘要:
A three-dimensional integrated circuit includes a semiconductor device, an insulator formed on the semiconductor device, an interconnect formed in the insulator, and a graphene device formed on the insulator.
摘要:
A three dimensional integrated circuit includes a silicon substrate, a first source region disposed on the substrate, a first drain region disposed on the substrate, a first gate stack portion disposed on the substrate, a first dielectric layer disposed on the first source region, the first drain region, the first gate stack portion, and the substrate, a second dielectric layer formed on the first dielectric layer, a second source region disposed on the second dielectric layer, a second drain region disposed on the second dielectric layer, and a second gate stack portion disposed on the second dielectric layer, the second gate stack portion including a graphene layer.
摘要:
A three dimensional integrated circuit includes a silicon substrate, a first source region disposed on the substrate, a first drain region disposed on the substrate, a first gate stack portion disposed on the substrate, a first dielectric layer disposed on the first source region, the first drain region, the first gate stack portion, and the substrate, a second dielectric layer formed on the first dielectric layer, a second source region disposed on the second dielectric layer, a second drain region disposed on the second dielectric layer, and a second gate stack portion disposed on the second dielectric layer, the second gate stack portion including a graphene layer.
摘要:
A three dimensional integrated circuit includes a silicon substrate, a first source region disposed on the substrate, a first drain region disposed on the substrate, a first gate stack portion disposed on the substrate, a first dielectric layer disposed on the first source region, the first drain region, the first gate stack portion, and the substrate, a second dielectric layer formed on the first dielectric layer, a second source region disposed on the second dielectric layer, a second drain region disposed on the second dielectric layer, and a second gate stack portion disposed on the second dielectric layer, the second gate stack portion including a graphene layer.
摘要:
A method is disclosed to fabricate an electro-mechanical device such as a MEMS or NEMS switch. The method includes providing a silicon layer disposed over an insulating layer that is disposed on a silicon substrate; releasing a portion of the silicon layer from the insulating layer so that it is at least partially suspended over a cavity in the insulating layer; depositing a metal (e.g., Pt) on at least one surface of at least the released portion of the silicon layer and, using a thermal process, fully siliciding at least the released portion of the silicon layer using the deposited metal. The method eliminates silicide-induced stress to the released Si member, as the entire Si member is silicided. Furthermore no conventional wet chemical etch is used after forming the fully silicided material thereby reducing a possibility of causing corrosion of the silicide and an increase in stiction.
摘要:
A miniaturized electro-mechanical switch includes a moveable portion having a contact configured to make, when the switch is actuated, an electrical connection between two stationary points. At least the contact is composed of a fully silicided material. A structure includes a silicon layer formed over an insulator layer and a micromechanical switch formed at least partially within the silicon layer. The micromechanical switch has a conductive structure, and where at least electrically contacting portions of the conductive structure are comprised of fully silicided material.