摘要:
A method and a computer system for designing an optical photomask for forming a prepattern opening in a photoresist layer on a substrate wherein the photoresist layer and the prepattern opening are coated with a self-assembly material that undergoes directed self-assembly to form a directed self-assembly pattern. The methods includes: generating a mask design shape from a target design shape; generating a sub-resolution assist feature design shape based on the mask design shape; using a computer to generate a prepattern shape based on the sub-resolution assist feature design shape; and using a computer to evaluate if a directed self-assembly pattern of the self-assembly material based on the prepattern shape is within specified ranges of dimensional and positional targets of the target design shape on the substrate.
摘要:
A method and a computer system for designing an optical photomask for forming a prepattern opening in a photoresist layer on a substrate wherein the photoresist layer and the prepattern opening are coated with a self-assembly material that undergoes directed self-assembly to form a directed self-assembly pattern. The methods includes: generating a mask design shape from a target design shape; generating a sub-resolution assist feature design shape based on the mask design shape; using a computer to generate a prepattern shape based on the sub-resolution assist feature design shape; and using a computer to evaluate if a directed self-assembly pattern of the self-assembly material based on the prepattern shape is within specified ranges of dimensional and positional targets of the target design shape on the substrate.
摘要:
A method and a computer system for designing an optical photomask for forming a prepattern opening in a photoresist layer on a substrate wherein the photoresist layer and the prepattern opening are coated with a self-assembly material that undergoes directed self-assembly to form a directed self-assembly pattern. The methods includes: generating a mask design shape from a target design shape; generating a sub-resolution assist feature design shape based on the mask design shape; using a computer to generate a prepattern shape based on the sub-resolution assist feature design shape; and using a computer to evaluate if a directed self-assembly pattern of the self-assembly material based on the prepattern shape is within specified ranges of dimensional and positional targets of the target design shape on the substrate.
摘要:
A method and a computer system for designing an optical photomask for forming a prepattern opening in a photoresist layer on a substrate wherein the photoresist layer and the prepattern opening are coated with a self-assembly material that undergoes directed self-assembly to form a directed self-assembly pattern. The methods includes: generating a mask design shape from a target design shape; generating a sub-resolution assist feature design shape based on the mask design shape; using a computer to generate a prepattern shape based on the sub-resolution assist feature design shape; and using a computer to evaluate if a directed self-assembly pattern of the self-assembly material based on the prepattern shape is within specified ranges of dimensional and positional targets of the target design shape on the substrate.
摘要:
Methods involving the self-assembly of block copolymers are described herein, in which by beginning with openings (in one or more substrates) that have a targeted CD (critical dimension), holes are formed, in either regular arrays or arbitrary arrangements. Significantly, the percentage variation in the average diameter of the formed holes is less than the percentage variation of the average diameter of the initial openings. The formed holes (or vias) can be transferred into the underlying substrate(s), and these holes may then be backfilled with material, such as a metallic conductor. Preferred aspects of the invention enable the creation of vias with tighter pitch and better CD uniformity, even at sub-22 nm technology nodes.
摘要:
Methods involving the self-assembly of block copolymers are described herein, in which by beginning with openings (in one or more substrates) that have a targeted CD (critical dimension), holes are formed, in either regular arrays or arbitrary arrangements. Significantly, the percentage variation in the average diameter of the formed holes is less than the percentage variation of the average diameter of the initial openings. The formed holes (or vias) can be transferred into the underlying substrate(s), and these holes may then be backfilled with material, such as a metallic conductor. Preferred aspects of the invention enable the creation of vias with tighter pitch and better CD uniformity, even at sub-22 nm technology nodes.
摘要:
The invention provides a MOS transistor and a method for forming the MOS transistor. The MOS transistor includes a semiconductor substrate; a gate stack on the semiconductor substrate, and including a gate dielectric layer and a gate electrode on the semiconductor substrate in sequence; a source region and a drain region, respectively at sidewalls of the gate stack sidewalls of the gate stack and in the semiconductor; sacrificial metal spacers on sidewalls of the gate stack sidewalls of the gate stack, and having tensile stress or compressive stress. This invention scales down the equivalent oxide thickness, improves uniformity of device performance, raises carrier mobility and promotes device performance.
摘要:
A method for manufacturing a semiconductor device is provided. The method comprises providing a semiconductor substrate; forming a dummy gate structure and a spacer surrounding the dummy gate structure on the semiconductor substrate; forming source/drain regions on both sides of the gate structure within the semiconductor substrate using the dummy gate structure and the spacer as a mask; forming an interlayer dielectric layer on the upper surface of the semiconductor substrate, the upper surface of the interlayer dielectric layer being flush with the upper surface of the dummy gate structure; removing at least a part of the dummy gate structure so as to form a trench surrounded by the spacer; performing tilt angle ion implantation into the semiconductor substrate using the interlayer dielectric layer and spacer as a mask so as to form an asymmetric Halo implantation region; sequentially forming a gate dielectric layer and a metal gate in the trench.
摘要:
A method of manufacturing a semiconductor device, which comprises: providing a semiconductor substrate; forming a dummy gate structure and a spacer surrounding the dummy gate structure on the semiconductor substrate; forming source/drain regions on both sides of the gate structure within the semiconductor substrate using the dummy gate structure and the spacer as a mask; forming an interlayer dielectric layer on the upper surface of the semiconductor substrate, the upper surface of the interlayer dielectric layer being flush with the upper surface of the dummy gate structure; removing at least a part of the dummy gate structure so as to form a trench surrounded by the spacer; performing tilt angle ion implantation into the semiconductor substrate using the interlayer dielectric layer and spacer as a mask so as to form an asymmetric Halo implantation region; sequentially forming a gate dielectric layer and a metal gate in the trench. The present invention prevents the Halo implanted ions from entering into the source/drain regions, thus reducing the source/drain junction capacitance; and the asymmetric Halo implantation region can reduce the static power dissipation of the semiconductor device.
摘要:
The invention provides a MOS transistor and a method for forming the MOS transistor. The MOS transistor includes a semiconductor substrate; a gate stack on the semiconductor substrate, and including a gate dielectric layer and a gate electrode on the semiconductor substrate in sequence; a source region and a drain region, respectively at sidewalls of the gate stack sidewalls of the gate stack and in the semiconductor; sacrificial metal spacers on sidewalls of the gate stack sidewalls of the gate stack, and having tensile stress or compressive stress. This invention scales down the equivalent oxide thickness, improves uniformity of device performance, raises carrier mobility and promotes device performance.