Method and apparatus for determining end-point in a chamber cleaning process

    公开(公告)号:US06553335B2

    公开(公告)日:2003-04-22

    申请号:US09886838

    申请日:2001-06-21

    CPC classification number: H01L21/67253 H01J37/32862 H01J37/32963

    Abstract: A method for determining end-point in a chamber cleaning process is disclosed which can be carried out by first providing a chamber that has a cavity for conducting a semiconductor fabrication process therein, then mounting a crystal sensor on a surface of the chamber cavity at a position that the sensor is exposed to gases or liquids or generated by the fabrication process; conducting a semiconductor fabrication process in the chamber; flowing a cleaning fluid into and in-situ cleaning the surface of the chamber cavity; inputting an oscillating frequency into the crystal sensor and monitoring an output frequency of oscillation from the sensor; and comparing the output frequency of oscillation to an output frequency from a crystal sensor that has a clean surface and determining when the surface of the chamber cavity is cleaned.

    Method and apparatus for end point detection in a chemical mechanical polishing process using two laser beams
    4.
    发明授权
    Method and apparatus for end point detection in a chemical mechanical polishing process using two laser beams 有权
    在使用两个激光束的化学机械抛光工艺中终点检测的方法和装置

    公开(公告)号:US06429130B1

    公开(公告)日:2002-08-06

    申请号:US09451231

    申请日:1999-11-29

    Inventor: Jui-Ping Chuang

    CPC classification number: B24B37/013 B24B49/12

    Abstract: A method and an apparatus for determining end point in a chemical mechanical polishing process by utilizing two separate laser beams are provided. When two separate laser beams of different wavelengths are utilized, the difference in the wavelengths is at least about 50 nm. For instance, one wavelength may be about 633 nm, while the other wavelength may be about 700˜950 nm. When two laser beams of different incident angles are utilized, the difference in the angles may be at least 2°, and preferably at least 5°.

    Abstract translation: 提供了一种通过利用两个单独的激光束来确定化学机械抛光工艺中的终点的方法和装置。 当使用不同波长的两个分离的激光束时,波长的差值至少为约50nm。 例如,一个波长可以是约633nm,而另一个波长可以是约700-950nm。 当使用具有不同入射角的两个激光束时,角度差可以是至少2°,优选至少5°。

    Method for depositing silicon oxide incorporating an outgassing step
    6.
    发明授权
    Method for depositing silicon oxide incorporating an outgassing step 有权
    包含放气步骤的沉积氧化硅的方法

    公开(公告)号:US06716740B2

    公开(公告)日:2004-04-06

    申请号:US09974584

    申请日:2001-10-09

    Abstract: A method for depositing an inter-metal-dielectric layer on a semiconductor substrate by plasma chemical vapor deposition without the layer cracking defect is disclosed. The semiconductor substrate is first heat-treated in the same plasma process chamber to a temperature of at least 300° C. for a length of time sufficient to outgas a surface of the semiconductor substrate. The impurity gases absorbed on the surface of the semiconductor substrate can be effectively outgassed during the heat treatment process such that they are not trapped under an IMD layer deposited in a subsequent plasma deposition process. The method effectively minimizes or eliminates completely the IMD layer cracking defect of the dielectric layer.

    Abstract translation: 公开了一种通过等离子体化学气相沉积在半导体衬底上沉积金属间介电层而不发生层裂纹缺陷的方法。 首先在相同的等离子体处理室中将半导体衬底热处理至至少300℃的温度足以排出半导体衬底的表面的时间长度。 吸收在半导体衬底的表面上的杂质气体可以在热处理过程中被有效地除气,使得它们不被捕获在随后的等离子体沉积工艺中沉积的IMD层下面。 该方法有效地最小化或消除了介电层的IMD层裂纹缺陷。

    Chemical mechanical polish (CMP) planarizing method employing derivative signal end-point monitoring and control
    7.
    发明授权
    Chemical mechanical polish (CMP) planarizing method employing derivative signal end-point monitoring and control 有权
    采用衍生信号端点监测和控制的化学机械抛光(CMP)平面化方法

    公开(公告)号:US06524959B1

    公开(公告)日:2003-02-25

    申请号:US09686766

    申请日:2000-10-10

    CPC classification number: B24B37/013 B24B49/12

    Abstract: Within a method for fabricating a microelectronic fabrication there is first provided a substrate having formed thereover a minimum of one microelectronic layer, where the minimum of one microelectronic layer is at least partially transparent to an incident radiation beam. There is then chemical mechanical polish (CMP) planarized the minimum of one microelectronic layer, while employing a chemical mechanical polish (CMP) planarizing method, to form from the minimum of one microelectronic layer a minimum of one chemical mechanical polish (CMP) planarized microelectronic layer. Within the method, a chemical mechanical polish (CMP) planarizing endpoint within the chemical mechanical polish (CMP) planarizing method with respect to the minimum of one chemical mechanical polish (CMP) planarized microelectronic layer is determined while employing the incident radiation beam incident upon the minimum of one microelectronic layer, in conjunction with a derivative of a property of a minimum of one reflected portion of the incident radiation beam reflected from the minimum of one microelectronic layer as the minimum of one microelectronic layer is chemical mechanical polish (CMP) planarized to form the minimum of one chemical mechanical polish (CMP) planarized microelectronic layer.

    Abstract translation: 在用于制造微电子制造的方法中,首先提供了在至少一个微电子层之上形成的衬底,其中一个微电子层的最小值对入射的辐射束至少部分透明。 然后化学机械抛光(CMP)将最小的一个微电子层平坦化,同时采用化学机械抛光(CMP)平面化方法,从最小的一个微电子层形成最少一个化学机械抛光(CMP)平面化微电子 层。 在该方法中,在使用入射到所述化学机械抛光(CMP)平坦化微电子层的入射辐射束的同时,在化学机械抛光(CMP)平面化方法中,化学机械抛光(CMP)平面化方法中的化学机械抛光(CMP) 一个微电子层的最小值与从一个微电子层的最小值反射的入射辐射束的最小一个反射部分的性质的导数结合,作为一个微电子层的最小值是化学机械抛光(CMP)平坦化为 形成一个化学机械抛光(CMP)平面化微电子层的最小值。

Patent Agency Ranking