摘要:
Some embodiments relate to a manufacturing method for a semiconductor device. In this method, a semiconductor workpiece, which includes a metal gate electrode thereon, is provided. An opening is formed in the semiconductor workpiece to expose a surface of the metal gate. Formation of the opening leaves a polymeric residue on the workpiece. To remove the polymeric residue from the workpiece, a cleaning solution that includes an organic alkali component is used.
摘要:
Some embodiments relate to a manufacturing method for a semiconductor device. In this method, a semiconductor workpiece, which includes a metal gate electrode thereon, is provided. An opening is formed in the semiconductor workpiece to expose a surface of the metal gate. Formation of the opening leaves a polymeric residue on the workpiece. To remove the polymeric residue from the workpiece, a cleaning solution that includes an organic alkali component is used.
摘要:
An apparatus comprises a process chamber, and a loadlock connected to the process chamber. The loadlock is configured to have a wafer holder disposed therein. The wafer holder is configured to store a plurality of wafers, and is configured to transport the plurality of wafers away from the loadlock.
摘要:
A system and method for etching a substrate is provided. An embodiment comprises utilizing an inert carrier gas in order to introduce a liquid etchant to a substrate. The inert carrier gas may prevent undesirable chemical reactions from taking place during the etching process, thereby helping to reduce the number of defects that occur to the substrate and other structures during the etching process.
摘要:
A system and method for etching a substrate is provided. An embodiment comprises utilizing an inert carrier gas in order to introduce a liquid etchant to a substrate. The inert carrier gas may prevent undesirable chemical reactions from taking place during the etching process, thereby helping to reduce the number of defects that occur to the substrate and other structures during the etching process.
摘要:
Methods and apparatus for a movable megasonic wafer probe. A method is disclosed including positioning a movable probe on a wafer surface, the movable probe having an open bottom portion that exposes a portion of the wafer surface; applying a liquid onto the wafer surface through a bottom portion of the movable probe; and moving the movable probe at a predetermined scan speed to traverse the wafer surface, applying the liquid to the wafer surface while moving over the wafer surface. In additional embodiments the method includes providing a transducer for applying megasonic energy to the wafer surface. Apparatus embodiments are disclosed including the movable megasonic wafer probe.
摘要:
A method of manufacturing double diffused drains in a semiconductor device. An embodiment comprises forming a gate dielectric layer on a substrate, and masking and patterning the gate dielectric layer. Once the gate dielectric layer has been patterned, a second dielectric layer, having a different depth than the gate dielectric layer, is deposited into the pattern. Once the dielectric layers have been placed into a step form, DDDs are formed by implanting ions through the two dielectric layers, whose different filtering properties form the DDDS. In another embodiment the implantations through the two dielectric layers are performed using different energies to form the different dose regions. In yet another embodiment the implantations are performed using different species (light and heavy), instead of different energies, to form the different dose regions.
摘要:
The present disclosure provides a method for fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a first metal layer and a first silicon layer by an in-situ deposition process, patterning the first silicon layer to remove a portion overlying the second region, patterning the first metal layer using the patterned first silicon layer as a mask, and removing the patterned first silicon layer including applying a solution. The solution includes a first component having an [F—] concentration greater than 0.01 M, a second component configured to adjust a pH of the solution from about 4.3 to about 6.7, and a third component configured to adjust a potential of the solution to be greater than −1.4 volts.
摘要:
A method for forming dual thickness gate oxide layers comprising the following steps. A structure having at least a first area and a second area is provided. The second area of the structure is masked. Ion implanting Si4+ or Ge4+ ions into the unmasked first area of the structure to form an amorphous layer within the first area of the structure. The second area of the structure is unmasked. The first and second areas of the structure are oxidized to form: a first gate oxide layer upon the structure within the first area; and a second gate oxide layer upon the structure within the second area. The first gate oxide layer having a greater thickness than the second gate oxide layer, completing formation of the dual thickness gate oxide layers.
摘要:
An apparatus comprises a process chamber, and a loadlock connected to the process chamber. The loadlock is configured to have a wafer holder disposed therein. The wafer holder is configured to store a plurality of wafers, and is configured to transport the plurality of wafers away from the loadlock.