Abstract:
In one embodiment, edge devices can be configured to be coupled to a multi-stage switch fabric and peripheral processing devices. The edge devices and the multi-stage switch fabric can collectively define a single logical entity. A first edge device from the edge devices can be configured to be coupled to a first peripheral processing device from the peripheral processing devices. The second edge device from the edge devices can be configured to be coupled to a second peripheral processing device from the peripheral processing devices. The first edge device can be configured such that virtual resources including a first virtual resource can be defined at the first peripheral processing device. A network management module coupled to the edge devices and configured to provision the virtual resources such that the first virtual resource can be migrated from the first peripheral processing device to the second peripheral processing device.
Abstract:
In some embodiments, an apparatus comprises a processing module, disposed within a first switch fabric element, configured to detect a second switch fabric element having a routing module when the second switch fabric element is operatively coupled to the first switch fabric element. The processing module is configured to define a virtual processing module configured to be operatively coupled to the second switch fabric element. The virtual processing module is configured to receive a request from the second switch fabric element for forwarding information and the virtual processing module is configured to send the forwarding information to the routing module.
Abstract:
A device may receive a request to read data from or write data to a memory that includes a number of memory banks. The request may include an address. The device may perform a mapping operation on the address to map the address from a first address space to a second address space, identify one of the memory banks based on the address in the second address space, and send the request to the identified memory bank.
Abstract:
In one embodiment, edge devices can be configured to be coupled to a multi-stage switch fabric and peripheral processing devices. The edge devices and the multi-stage switch fabric can collectively define a single logical entity. A first edge device from the edge devices can be configured to be coupled to a first peripheral processing device from the peripheral processing devices. The second edge device from the edge devices can be configured to be coupled to a second peripheral processing device from the peripheral processing devices. The first edge device can be configured such that virtual resources including a first virtual resource can be defined at the first peripheral processing device. A network management module coupled to the edge devices and configured to provision the virtual resources such that the first virtual resource can be migrated from the first peripheral processing device to the second peripheral processing device.
Abstract:
A multicast-capable firewall allows firewall security policies to be applied to multicast traffic. The multicast-capable firewall may be integrated within a routing device, thus allowing a single device to provide both routing functionality, including multicast support, as well as firewall services. The routing device provides a user interface by which a user specifies one or more zones to be recognized by the integrated firewall when applying stateful firewall services to multicast packets. The user interface supports a syntax that allows the user to define subsets of the plurality of interfaces associated with the zones, and define a single multicast policy to be applied to multicast sessions associated with a multicast group. The multicast policy identifies common services to be applied pre-replication, and exceptions specifying additional services to be applied post-replication to copies of the multicast packets for the one or more zones.
Abstract:
In one embodiment, an apparatus includes a switch core that has a multi-stage switch fabric. A first set of peripheral processing devices coupled to the multi-stage switch fabric by a set of connections that have a protocol. Each peripheral processing device from the first set of peripheral processing devices is a storage node that has virtualized resources. The virtualized resources of the first set of peripheral processing devices collectively define a virtual storage resource interconnected by the switch core. A second set of peripheral processing devices coupled to the multi-stage switch fabric by a set of connections that have the protocol. Each peripheral processing device from the first set of peripheral processing devices is a compute node that has virtualized resources. The virtualized resources of the second set of peripheral processing devices collectively define a virtual compute resource interconnected by the switch core.
Abstract:
An apparatus comprises a routing module configured to receive a data unit having a code indicator. The routing module is configured to identify a virtual destination address based on the code indicator. The routing module is also configured to replace a destination address of the data unit with the virtual destination address to define a modified data unit. The routing module is further configured to send the modified data unit.
Abstract:
In one embodiment, a method includes sending a configuration signal to a virtual network switch module within a control plane of a communications network. The configuration signal is configured to define a first network rule at the virtual network switch module. The method also includes configuring a packet forwarding module such that the packet forwarding module implements a second network rule, and receiving status information from the virtual network switch module and status information from the packet forwarding module. The status information is received via the control plane.
Abstract:
In one embodiment, a method includes sending a configuration signal to a virtual network switch module within a control plane of a communications network. The configuration signal is configured to define a first network rule at the virtual network switch module. The method also includes configuring a packet forwarding module such that the packet forwarding module implements a second network rule, and receiving status information from the virtual network switch module and status information from the packet forwarding module. The status information is received via the control plane.
Abstract:
A multicast-capable firewall allows firewall security policies to be applied to multicast traffic. The multicast-capable firewall may be integrated within a routing device, thus allowing a single device to provide both routing functionality, including multicast support, as well as firewall services. The routing device provides a user interface by which a user specifies one or more zones to be recognized by the integrated firewall when applying stateful firewall services to multicast packets. The user interface supports a syntax that allows the user to define subsets of the plurality of interfaces associated with the zones, and define a single multicast policy to be applied to multicast sessions associated with a multicast group. The multicast policy identifies common services to be applied pre-replication, and exceptions specifying additional services to be applied post-replication to copies of the multicast packets for the one or more zones.