Abstract:
Using the ALTO Service, networking applications can request through the ALTO protocol information about the underlying network topology from the ISP or Content Provider. The ALTO Service provides information such as network resource preferences with the goal of modifying network resource consumption patterns while maintaining or improving application performance. This document describes, in one example, an ALTO server that implements enhancements to the ALTO service to assign a PID-type attribute to each of a set of one or more PIDs each associated with a subset of one or more endpoints of a network, wherein a PID-type attribute specifies a type for the subset of endpoints associated with the PID. The ALTO server generates an ALTO network map that includes a PID entry to describe each of the PIDs, wherein each PID entry includes a PID-type field that stores the assigned PID-type attribute for the PID described by the PID entry.
Abstract:
In general, techniques are described for managing content request referrals by keying content requests to a composite key data structure that maps end-user address prefixes and content identifiers to content delivery network servers of downstream CDNs. In one example, a CDN exchange includes a communication module to receive first network prefixes and first content identifiers from a first secondary content delivery network and to receive second network prefixes and second content identifiers from a second secondary content delivery network. A request router of the CDN exchange redirects the content request to the first secondary content delivery network or to the second secondary content delivery network according to a network address of the end user device and a content identifier for the content request.
Abstract:
Using the ALTO Service, networking applications can request through the ALTO protocol information about the underlying network topology from the ISP or Content Provider. The ALTO Service provides information such as preferences of network resources with the goal of modifying network resource consumption patterns while maintaining or improving application performance. This document describes, in one example, an ALTO server that implements enhancements to the ALTO service to enable initiating incremental updates of network and cost maps to ALTO clients upon receiving status information from a content delivery network (CDN) node.
Abstract:
In general, techniques are described for using routing information obtained by operation of network routing protocols to dynamically generate network and cost maps for an application-layer traffic optimization (ALTO) service. For example, an ALTO server of an autonomous system (AS) receives routing information from routers of the AS by listening for routing protocol updates outputted by the routers and uses the received topology information to dynamically generate a network map of PIDs that reflects a current topology of the AS and/or of the broader network that includes the AS. Additionally, the ALTO server dynamically calculates inter-PID costs using received routing information that reflects current link metrics. The ALTO server then assembles the inter-PID costs into a cost map that the ALTO server may provide, along with the network map, to clients of the ALTO service.
Abstract:
In general, techniques are described for dynamically scheduling and establishing paths in a multi-layer, multi-topology network to provide dynamic network resource allocation and support packet flow steering along paths prescribed at any layer or combination of layers of the network. In one example, a multi-topology path computation element (PCE) accepts requests from client applications for dedicated paths. The PCE receives topology information from network devices and attempts to identify paths through a layer or combination of layers of the network that can be established at the requested time in view of the specifications requested for the dedicated paths and the anticipated bandwidth/capacity available in the network. The PCE schedules the identified paths through the one or more layers of the network to carry traffic for the requested paths. At the scheduled times, the PCE programs path forwarding information into network nodes to establish the scheduled paths.
Abstract:
In general, techniques are described for dynamically scheduling and establishing paths in a multi-layer, multi-topology network to provide dynamic network resource allocation and support packet flow steering along paths prescribed at any layer or combination of layers of the network. In one example, a multi-topology path computation element (PCE) accepts requests from client applications for dedicated paths. The PCE receives topology information from network devices and attempts to identify paths through a layer or combination of layers of the network that can be established at the requested time in view of the specifications requested for the dedicated paths and the anticipated bandwidth/capacity available in the network. The PCE schedules the identified paths through the one or more layers of the network to carry traffic for the requested paths. At the scheduled times, the PCE programs path forwarding information into network nodes to establish the scheduled paths.
Abstract:
In general, techniques are described for distributing traffic engineering (TE) link information across network routing protocol domain boundaries using a routing protocol. In one example, a network device logically located within a first routing protocol domain includes a routing protocol module executing on a control unit to execute an exterior gateway routing protocol. The routing protocol module of the network device receives an exterior gateway routing protocol advertisement from a router logically located within a second routing protocol domain and decodes traffic engineering information for a traffic engineering link from the exterior gateway routing protocol advertisement. A path computation module of the network device computes a traffic engineered path by selecting the traffic engineering link for inclusion in the traffic engineered path based on the traffic engineering information.
Abstract:
In general, techniques are described for dynamically generating attributes from routing topology information and assigning dynamically generated attributes to network map entries to further characterize PIDs described therein. For example, a provider or other entity assigns, within a network device, endpoint types to one or more address prefixes for which the network device originates or forwards route advertisements. For each typed prefix, the network device adds an endpoint type identifier for the assigned endpoint type to route advertisements that traverse or originate with the network device and specify the prefix. An ALTO server peers with router advertisers to receive route advertisements. When the ALTO server receives a route advertisement that includes an endpoint type identifier, the ALTO server maps the endpoint type identifier to a PID attribute and assigns the PID attribute to a PID that includes a prefix identified in the route advertisement.
Abstract:
Using the ALTO Service, networking applications can request through the ALTO protocol information about the underlying network topology from the ISP or Content Provider. The ALTO Service provides information such as network resource preferences with the goal of modifying network resource consumption patterns while maintaining or improving application performance. This document describes, in one example, an ALTO server that implements enhancements to the ALTO service to assign a PID-type attribute to each of a set of one or more PIDs each associated with a subset of one or more endpoints of a network, wherein a PID-type attribute specifies a type for the subset of endpoints associated with the PID. The ALTO server generates an ALTO network map that includes a PID entry to describe each of the PIDs, wherein each PID entry includes a PID-type field that stores the assigned PID-type attribute for the PID described by the PID entry.
Abstract:
In general, techniques are described for using routing information obtained by operation of network routing protocols to dynamically generate network and cost maps for an application-layer traffic optimization (ALTO) service. For example, an ALTO server of an autonomous system (AS) receives routing information from routers of the AS by listening for routing protocol updates outputted by the routers and uses the received topology information to dynamically generate a network map of PIDs that reflects a current topology of the AS and/or of the broader network that includes the AS. Additionally, the ALTO server dynamically calculates inter-PID costs using received routing information that reflects current link metrics. The ALTO server then assembles the inter-PID costs into a cost map that the ALTO server may provide, along with the network map, to clients of the ALTO service.