摘要:
Disclosed is a current-conducting system for a lamp with molybdenum foils, gas-tighly embedded in at least one end section of the lamp, at which at two opposite narrow ends in each case an outer current supply conductor and an electrode or an outer current supply conductor and an inner current supply conductor are arranged. According to the invention, the molybdenum foils, current supply conductors and/or electrodes are provided with a coating, at least in sections, that is formed in such a way that the adhesion properties to the glass are improved in the area of the coating, with the coating being applied to the current-conducting system by vacuum-arc ion implantation (Arc-PVD).
摘要:
A hard material layer having a relatively low frictional resistance, which can be produced by impregnating the layer with a lubricant. Zirconium oxynitride layer, which has zirconium-, nitrogen- and oxygen-containing phase, is used as a hard material layer. The presence of the phase in the zirconium oxynitride layer leads to a perceptible reduction of the layer frictional resistance, such that further processing steps can advantageously be saved on coating of substrates, such a impregnation. The coating (26) can, for example, be applied on a tool (27), which is appropriate for metal-cutting machining a work piece (28). With the low frictional resistance, a dry machining of the work piece (28) can be executed with the tool. Another application is the coating of highly stressed components of fuel injection valve.
摘要:
A transport system for dry nanoparticles (18b). According to the invention, the nanoparticles (18b) are magnetized or electrically charged for transportation, a magnetic or electrical field is produced by a field generator (20a, 20) in the transport channel, and the nanoparticles (18b) migrate through the transport channel (12). The nanoparticles can be discharged through a discharge opening (13) which enables dosing to take place. In order to agglomerate the nanoparticles (18b) or to prevent attachment onto the inner wall (26), a coating (27) of the wall can be offset in oscillations by piezo electric actuators (28), the oscillations being transferred to the nanoparticles (18b). The dry nanoparticles can be handled in an advantageous manner due to the transport system, such that the dry nanoparticles need not be treated as a suspension.
摘要:
A transport system for dry nanoparticles (18b). According to the invention, the nanoparticles (18b) are magnetized or electrically charged for transportation, a magnetic or electrical field is produced by a field generator (20a, 20) in the transport channel, and the nanoparticles (18b) migrate through the transport channel (12). The nanoparticles can be discharged through a discharge opening (13) which enables dosing to take place. In order to agglomerate the nanoparticles (18b) or to prevent attachment onto the inner wall (26), a coating (27) of the wall can be offset in oscillations by piezo electric actuators (28), the oscillations being transferred to the nanoparticles (18b). The dry nanoparticles can be handled in an advantageous manner due to the transport system, such that the dry nanoparticles need not be treated as a suspension.
摘要:
A method for the electrochemical coating of a workpiece surface (2), micro- or nanoscale particles being introduced into the coating is provided. During coating, at least one jet composed of a jet medium comprising the micro- or nanoscale particles to be introduced is directed onto the workpiece surface (2).
摘要:
Disclosed is a method for producing an HTSC band on a substrate band, for example, a strong bond being created between the substrate band and the band as a result of the production process (e.g. PVD process or galvanic deposition). According to the invention, separation of the highly adhesive band from the substrate band is aided by the fact that the substrate band is made of a shape memory alloy, the shape memory of the band being activated in a separating device by heating and, possibly, cooling. Tension-related stress is generated in the joint on the boundary surface between the bands as a result of the substrate being deformed such that separation of the band from the substrate band is aided or even caused. Also disclosed is a production facility in which the substrate band is made of a shape memory alloy.
摘要:
The invention relates to a material composition that is used for producing a coating for a component, especially a turbine component, which is made of a metallic basic material, i.e. a metal or a metal alloy. Said material composition comprises a matrix material for forming a basic coating matrix and at least one filler for adjusting desired coating proportions or coating characteristics. The matrix material can be provided especially with basic glass ceramic properties. The inventive material composition is characterized in that the matrix material and/or the filler contains nanoparticles.
摘要:
A cladding (22) for a wall (12) includes a barrier layer (24) that can be deformed by the action of a polymer actuator (14). According to the invention, a contact surface (A) of the cladding lies completely against the wall, at least in the non-deformed state, stabilising the intrinsically elastic wall cladding. For example, the wall cladding can be fixed to the wall (12) in the form of lamellae (22), at respective points, in such a way that the activation of the polymer actuator (14) causes the lamellae (22) to bend, thus permitting, for example, a layer (25) of ice to be detached from the cladding. Alternatively, the cladding can also be configured from a membrane actuator, which is fixed at points, or by its entire surface to the wall (12).
摘要:
Short fibers in a solder or a welding material often do not have the desired strength. The invention uses fiber mats which have been introduced onto a surface or into a recess of a metallic component.
摘要:
Inner coatings according to the prior art often do not produce a uniform coating. The method according to the invention for the coating of a component with a cavity is characterized in that a coating material is mixed with a carrier material and introduced into the cavity, the carrier material decomposing at the evaporating temperature of the coating material, or has already decomposed, and the coating material being deposited from the gas phase on the component.