Abstract:
According to an embodiment, a highly thermally conductive silicon nitride sintered body includes silicon nitride crystal grains and a grain boundary phase. A thermal conductivity of the silicon nitride sintered body is not less than 80 W/(m·K). An average value of solid solution oxygen amounts of the silicon nitride crystal grains existing in a 20 μm×20 μm unit area in any cross section is not more than 0.2 wt %. An average value of major diameters of the silicon nitride crystal grains existing in a 50 μm×50 μm unit area in any cross section is not less than 1 μm and not more than 10 μm. An average of aspect ratios of the silicon nitride crystal grains existing in the 50 μm×50 μm unit area is not less than 2 and not more than 10.
Abstract:
According to one embodiment, a structure according to the embodiment includes a β type silicon nitride type crystal phase and a Y2Si3O3N4 type crystal phase. In an X-ray diffraction pattern according to a θ-2θ method of the structure, a ratio of a second peak intensity being maximum and appearing at 2θ=31.93±0.1° with respect to a first peak intensity being maximum and appearing at 2θ=27.03±0.1° is 0.005 or more and 0.20 or less.
Abstract:
A structure according to the embodiment includes a first crystal grain, a second crystal grain, and a first region. The first crystal grain includes silicon nitride. The second crystal grain includes a first element selected from a first group consisting of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, aluminum, chromium, zirconium, magnesium, zinc, titanium, gallium, beryllium, calcium, strontium, barium, hafnium, vanadium, niobium, tantalum, tungsten, iron, cobalt, nickel, and copper, and oxygen. The first region includes an oxide of the first element.
Abstract:
A digital signature generation apparatus includes memory to store finite field Fq and section D(ux(s, t), uy(s, t), s, t) as secret key, section being one of surfaces of three-dimensional manifold A(x, y, s, t) which is expressed by x-coordinate, y-coordinate, parameter s, and parameter t and is defined on finite field Fq, x-coordinate and y-coordinate of section being expressed by functions of parameter s and parameter t, calculates hash value of message m, generates hash value polynomial by embedding hash value in 1-variable polynomial h(t) defined on finite field Fq, and generates digital signature Ds(Ux(t), Uy(t), t) which is curve on section, the x-coordinate and y-coordinate of curve being expressed by functions of parameter t, by substituting hash value polynomial in parameter s of section.
Abstract:
The active material for a nonaqueous electrolyte secondary battery of the present embodiment includes a core particle and a carbon layer. The core particle is formed of silicon particles having a twinned crystal in part of a surface. The carbon layer coats the core particle.
Abstract:
A structure includes: a β silicon nitride crystal phase; and a Y2MgSi2O5N crystal phase. The structure gives a X-ray diffraction pattern by a θ-2θ method, the pattern having a ratio of a peak intensity of a (22-1) plane of the Y2MgSi2O5N crystal phase to a peak intensity of a (200) plane of the β silicon nitride crystal phase, the peak intensity of the (200) plane being determined at a position of 2θ=27.0±1°, the peak intensity of the (22-1) plane being determined at a position of 2θ=30.3±1°, and the ratio being 0.001 or more and 0.01 or less.
Abstract:
A thermally conductive insulator consisting essentially of a silicon nitride member, comprise: a first region provided 10 μm or more away from a first surface of the member along a depth direction in a section vertical to the first surface and containing at least one substance selected from the group consisting of silicon carbide and a carbon material; and a second region provided between the first surface and the first region. A concentration of silicon nitride of the second region is higher than a concentration of silicon nitride of the first region.
Abstract:
An electrode material for nonaqueous electrolyte secondary battery of an embodiment includes a silicon nanoparticle, and a coating layer coating the silicon nanoparticle. The coating layer includes an amorphous silicon oxide and a silicon carbide phase. At least a part of the silicon carbide phase exists on a surface of the silicon nanoparticle.
Abstract:
A negative electrode active material for a nonaqueous electrolyte secondary battery of an embodiment includes a carbonaceous material, a silicon oxide phase in the carbonaceous material, and a silicon phase in the silicon oxide phase. The negative electrode active material has a crack in the carbonaceous material, and the longest side of the crack has a length equal to or greater than ⅕ of the diameter of the negative electrode active material.