Abstract:
A carrier device according to an aspect of an embodiment includes a carrier chamber, a robot that is placed near one longitudinal-side wall in the carrier chamber, and a linear moving mechanism that has a track by which the robot is linearly moved in the longitudinal direction of the carrier chamber. The arm of the robot is defined to a length by which the arm does not interfere with the other longitudinal-side wall even if the arm is rotated around an arm spindle. The track of the linear moving mechanism has a length by which the leading end of the hand perpendicular to the track reaches a predetermined position in a connecting hole located at an end among connecting holes provided in the longitudinal-side wall.
Abstract:
A substrate transfer system includes a substrate transfer robot. The substrate transfer robot is provided between a first apparatus and a second apparatus which has a wall provided opposite to the substrate transfer robot and having an opening on the wall. The substrate transfer robot is configured to transfer a substrate from the first apparatus to the second apparatus via the opening and includes a base having a first axis, an arm body, and a hand. The arm body has a proximal end and a distal end and is connected to the base at the proximal end to rotate around the first axis. The substrate transfer robot includes a minimum distance from the first axis to an outermost portion of the arm body and the hand in a radius direction from the first axis being larger than a distance between the first axis and the opening on the wall.
Abstract:
A substrate transfer robot is disposed in a robot installment area defined between a first apparatus and a second apparatus including an opening. The first apparatus includes a first wall, the second apparatus including a second wall. The first apparatus accommodates the substrate at each of a lowest height position and a highest height position. The substrate transfer robot includes a base stationary, a hand configured, and an arm. The arm is rotatably mounted to the base to move the hand. The hand and the arm move in a height direction between a movable range defined between a lowest position and a highest position. The arm rotates with partially entering the opening when the substrate transfer robot takes out the substrate from the first apparatus. The substrate is accommodated at each of the lowest height position and the highest height position.
Abstract:
A transfer robot according to an embodiment includes an arm and a body. The arm is provided, at a terminal end thereof, with a robot hand transferring a thin plate-like workpiece, and operates in horizontal directions. The body includes a lifting and lowering mechanism that lifts and lowers the arm. In the transfer robot, at least a part of the body is disposed outside a side wall of a transfer room that is connected to an opening and closing device opening and closing a storage container for the thin plate-like workpiece and to a processing room processing the thin plate-like workpiece.
Abstract:
A substrate transfer system includes a substrate transfer robot disposed in a robot installment area defined between a first apparatus and a second apparatus. The first apparatus includes a first cassette, a second cassette and a first wall. The second apparatus includes a second wall. The substrate transfer robot transfers a substrate from each of the first cassette and the second cassette to the second apparatus. The substrate transfer robot includes a hand and an arm. The arm includes a first arm rotatable about a center of rotation. The first cassette is closer to the center of rotation than the second cassette. The arm moves with being partially disposed beyond the second wall in plan view and the arm moves without being disposed beyond the second wall in plan view when taking out the substrate from the first cassette.
Abstract:
A transfer robot according to the embodiment includes an arm unit, a base unit, a guide unit, a lifting unit, and a vent part. The arm unit includes a robot hand capable of holding an object to be transferred. The base unit is formed into a substantially box shape. The guide unit includes a vertical shaft vertically arranged in the base unit. The lifting unit is provided to be raisable and lowerable along the vertical shaft and supports the arm unit at an upper end portion. The vent part is opened in an upper surface of the base unit and vents downflow from an outside to an inside of the base unit.
Abstract:
A robot includes an arm having a base end portion rotatably installed through a joint part and a tip end portion in which an output shaft is installed; and a drive mechanism arranged within the arm and configured to drive the output shaft at a reduced speed. The drive mechanism includes a motor having a motor shaft, a driving pulley attached to the motor shaft, a driven pulley attached to the output shaft, at least one intermediate pulley provided between the driving pulley and the driven pulley, and a plurality of belts for operatively interconnecting the driving pulley and the driven pulley through the intermediate pulley.
Abstract:
A suction pad includes a pad portion for holding a target object by suction and having a first and a second connection end portion; and a first and a second fixing portion provided at positions spaced apart from the pad portion so as to be opposite to each other across the pad portion to fix the pad portion. The suction pad further includes a first support portion having an extension length larger than a spaced-apart distance between the pad portion and the first fixing portion and connecting the first connection end portion to the first fixing portion; and a second support portion having an extension length larger than a spaced-apart distance between the pad portion and the second fixing portion and connecting the second connection end portion to the second fixing portion.
Abstract:
A substrate transfer system includes a substrate transfer robot disposed in a robot installment area defined between a first apparatus and a second apparatus comprising an opening. The substrate transfer robot includes a hand and an arm. The hand is configured to support a substrate. The arm is configured to move the hand. The arm and the hand supporting the substrate are configured to rotate on a horizontal surface within a minimal rotation area of the substrate transfer robot such that an outer periphery of the minimal rotation area overlaps an inside of the second apparatus through the opening so as to transfer the substrate from a first position in the first apparatus to a second position in the second apparatus through the opening.
Abstract:
A conveying system according to an embodiment includes a robot and a controller. The controller includes a switching unit. The robot includes an arm unit formed of a hand and a plurality of arms connected rotatably with respect to one another, and a base unit. An arm on a rear end side is connected to the base unit rotatably about a rotation axis, and the hand is rotatably connected to an arm on a front end side. The switching unit switches cylindrical coordinate control for controlling the arm unit such that a trajectory of the hand overlaps with any one of lines radiating from the rotation axis and rectangular coordinate control for controlling the arm unit such that the trajectory of the hand overlaps with none of the lines at a predetermined timing.